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Abstract—Keratitis is an inflammatory corneal condition re-
sponsible for 10% of visual impairment in low- and middle-
income countries (LMICs), with bacteria, fungi, or amoeba as the
most common infection etiologies. While an accurate and timely
diagnosis is crucial for the selected treatment and the patients’
sight outcomes, due to the high cost and limited availability
of laboratory diagnostics in LMICs, diagnosis is often made
by clinical observation alone, despite its lower accuracy. In
this study, we investigate and compare different deep learning
approaches to diagnose the source of infection: 1) three separate
binary models for infection type predictions; 2) a multitask model
with a shared backbone and three parallel classification layers
(Multitask V1); and, 3) a multitask model with a shared backbone
and a multi-head classification layer (Multitask V2). We used
a private Brazilian cornea dataset to conduct the empirical
evaluation. We achieved the best results with Multitask V2,
with an area under the receiver operating characteristic curve
(AUROC) confidence intervals of 0.7413-0.7740 (bacteria), 0.8395-
0.8725 (fungi), and 0.9448-0.9616 (amoeba). A statistical analysis
of the impact of patient features on models’ performance revealed
that sex significantly affects amoeba infection prediction, and age
seems to affect fungi and bacteria predictions.

Index Terms—computer vision, deep neural networks, kerati-
tis, machine learning, multitask learning

I. INTRODUCTION

According to the World Health Organization (WHO) [12],
corneal blindness impacts 6M people worldwide, with keratitis
as its leading cause [19], [20], with different consequences
in low, middle and high-income countries [1]. Keratitis (or
corneal ulcer) is an inflammation of the cornea caused by
microorganisms (e.g., bacteria (BK), viruses (VK), fungi (FK),
amoeba (AK), or herpes simplex keratitis (HSK)) or by non-
infectious factors (e.g., trauma or chemical exposure) [11].
This disease is more common in LMICs, with its risk factors
(e.g., compromised immune systems, poor ocular hygiene,

This work was financed by National Funds through the Portuguese funding
agency, Portuguese Foundation for Science and Technology (FCT) through
the Ph.D. Grant “2020.06434.BD”.

contact lens wear, eye trauma, and surgery, exposure to con-
taminated water and soils and agricultural work) [9], [14]
being correlated with the context of rural areas of these
geographies [19]. The symptoms of keratitis include eye
redness, eye pain, excess tears or discharge, foreign body
sensation, difficulty opening the eyelid, blurred vision, light
sensitivity, and watery eyes [9]. While the symptoms are well-
defined, the main challenge with this disease is related to the
diagnosis of the etiology, a crucial detail for the treatment
of the condition and prevention of vision loss. The clinical
pipeline for determining the etiology includes techniques
such as corneal scrapping with gram stain, microscopy, and
culture analysis. However, given their substantial costs (i.e.,
approximately $200 per patient in Brazil), these resources are
often unavailable in LMICs. The alternative approach relies
on performing a clinical examination with a slit lamp, with
bright light and enough magnification to observe the infection.
Nevertheless, distinguishing between the types of infection
remains difficult and might lead to a misdiagnosis, worsening
the symptoms and requiring an eye surgery [1], [4], [18]. In
this paper, we explore the potential of deep learning to classify
keratitis etiologies using eye corneal photographs, making the
following scientific contributions:

1) Proposal and implementation of deep learning algo-
rithms to classify different etiologies of keratitis from
corneal eye photographs, using a new private Brazilian
cornea dataset with clinical attributes and annotations;

2) Assessment of the statistical impact of correlated fea-
tures (i.e., age and sex) on disease presentation.

The code related to the implementation of this work is publicly
available in a GitHub repository1.

1https://github.com/mariamiguel01/Keratitis Classifier
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II. RELATED WORK

A. Literature Review on Keratitis Classification

In this section, we present a literature review on the state-
of-the-art deep learning algorithms applied to keratitis classi-
fication in external eye photographs and organize our findings
divided by predictive task: a) BK versus FK, and b) Multiple
Infections.

a) BK versus FK: Reed et al. [16] developed a solution
that uses a data augmentation pipeline and regularization
techniques to fine-tune different convolutional neural network
(CNN) architectures. After hyper-parameter optimization, their
best model achieved an AUROC of 83%. In another study
conducted on a different Indian dataset comprising 50% BK
and 50% FK, Reed et al. [15] leveraged transfer learning on
a pre-trained deep learning system and reported an accuracy
of 76%.

b) Multiple Infections: Koyama et al. [10] developed a
deep learning algorithm to classify BK, FK, AK, and HSK
using pre-trained CNNs and a dataset containing 4,306 images
from clinical cases and web sources under different illumina-
tion conditions. Under a k-fold cross-validation strategy, they
trained a hierarchical two-step CNN classifier to handle class
imbalance, with the first CNN discriminating BK vs. non-
bacterial cases and the second categorizing non-bacterial cases
into AL, FK, or HSK. The final classifier, a gradient-boosting
decision tree (GBDT), uses the CNN scores.

B. Ophthalmologists versus Artificial Intelligence

Different studies have been conducted to evaluate the oph-
thalmologist’s performance metrics when compared to those
of deep learning solutions. Human performance is often lower
than that of the deep learning system and much more depen-
dent on other variables like years of expertise and familiarity
with the disease. Since this performance is very dependent
on the dataset, several studies compared the model and the
experts’ performance. Redd et al. [16] compared the perfor-
mance of 66 international expert cornea specialists in the same
Indian dataset used in [15]. The panel of specialists achieved
an AUROC of 76%, which is significantly lower (p < 0.01)
than the one found by the deep learning model (83%).

III. METHODOLOGY

This study was conducted in accordance with the principles
of the Declaration of Helsinki and was approved by the
Research Ethics Committee of the Federal University of São
Paulo (UNIFESP), Brazil.

A. Dataset

1) Description: Two ophthalmologist co-authors (Camila
Kase and Luis Nakayama) acquired the data at UNIFESP.
This dataset contains healthy and non-healthy patients for
keratitis (i.e., AK, BK, and FK), confirmed by corneal scraping
culture. The dataset contains 24,692 exams, belonging to 3,296
patients (i.e., multiple exams per patient), associated with
the patient’s clinical data and the corresponding eye corneal
images. From the total exams, we used the subset that had

medical information and tested positive to keratitis (4,767
exams). After validation with the clinicians, we realized that
the same image corresponded to different patient visits, and
that an image is labeled as positive for an infection if any test
for that infection is positive. These details allowed us to clean
the dataset from redundant or non-relevant entries, and achieve
a final dataset of 2,585 unique cases. We also excluded the
cases with no infection (512 cases), resulting in a final dataset
of 2,064 cases, the proportions of each class are present in
Table I. Figures 1 - 6 show some examples of the dataset.

Fig. 1. Bacteria Dataset
Example.

Fig. 2. Fungi Dataset
Example.

Fig. 3. Amoeba Dataset
Example.

Fig. 4. Bacteria Dataset
Example.

Fig. 5. Fungi Dataset
Example.

Fig. 6. Amoeba Dataset
Example.

TABLE I
NUMBER AND PROPORTION OF CASES FOR THE POSSIBLE COMBINATIONS

OF INFECTIONS (ABSENT COMBINATIONS DID NOT OCCUR IN THE
DATASET).

Bacteria Amoeba Fungi # Cases % Cases

Pos. Neg. Neg. 1176 56.98%
Neg. Neg. Pos. 277 13.42%
Pos. Neg. Pos. 213 10.32%
Neg. Pos. Neg. 207 10.03%
Pos. Pos. Neg. 191 9.26%

2) Exploratory Data Analysis: Following clinical advice,
we focus our exploratory data analysis on age and sex. We
analyzed the age distribution using a kernel density estimation,
observing a high peek of ages 20-40 and 40-65, which can
be related to the two most common sources of infection
(i.e., inadequate use of contact lenses and agricultural work).
For implementation purposes, we grouped age values into
four bins: 0 − 18 (label 0), 18 − 40 (label 1), 40 − 65
(label 2), and > 65 (label 3). The majority of cases exist
in label 2 (39.39%) and label 1 (36.05%), while label 0 is
underrepresented (2.62%). Regarding sex, our analysis showed
that there are 1,203 male patients (58,28%) and 861 female
patients (41,72%) (i.e., balanced dataset for sex). We also
performed a correlation analysis between the clinical features
and the etiologies to understand the intrinsic biases of the
dataset. Results showed positive and negative correlations
between the etiologies and the clinical features (e.g., sex or



age). Naturally, it is important to denote that there is a high
correlation (both positive and negative) between the different
types of infections.

B. Implementation

1) Models: We propose and implement two different ap-
proaches to achieve deep learning models to predict keratitis
from eye cornea photographs:

• Baseline approach: three simple binary deep learning
models, one for each type of infection. Diagnosis for all
infections requires the use of the three models.

• Multi-task approach: a multi-label deep learning model
that predicts all the infections in a single forward pass,
reducing runtime and computational costs. Within this
approach, we tested two different architectures: 1) Multi-
task V1, containing three binary classification layers, one
per infection type; and 2) Multi-task V2, containing a
classification layer with three neurons.

Besides, following the correlation analysis between clinical
features and the clinical outcomes, we also developed models
to predict age (multi-class model) and sex (binary model) from
the same images to understand if we could mitigate potential
biases [13]. To select an appropriate backbone (i.e., the feature
extractor) for the models, we trained three candidates (i.e.,
DenseNet121 [8], ResNet50 [6] and VGG16 [17]) in a small
subset (i.e., 50 images) of the dataset and recorded their
runtime and performance. We selected the backbone with a
lower runtime and better performance. After the backbone, we
added a 2D average pooling layer with a kernel of 3×3, stride
of 2×2, and padding of 1, followed by a batch normalization
layer and a dropout layer with a probability of 0.3. Figure 7
shows the classification layer of each of the approaches.

Fig. 7. Schematic overview of the fully connected layers of each model, from
left to right: Baseline approach and Sex prediction - a fully connected layer
with a single neuron (and a sigmoid activation function); Age prediction - a
fully connected layer with four neurons (and a softmax activation function);
Multi-task V1: - three parallel fully connected layers, each layer with a
single neuron (and a sigmoid activation function), i.e., each layer predicting
the binary outcome of a given infection; Multi-task V2 - a fully connected
layer with three neurons (and a sigmoid activation function), i.e., each neuron
predicting the binary outcome of a given infection.

2) Data Preparation and Augmentation: Given the reduced
number of usable cases (i.e., 2,064 out of 24,692), we started
by artificially creating photographs of “left” and “right” eyes
per patient, by applying a flip operation on the y-axis to the
available images in the dataset (each patient only had an image
of an eye). Besides increasing the size of the dataset, it also
allows the model to be robust against images of both eyes.
Afterwards, we resized all the images in the dataset to 224×

224. We present the conversion of labels for the models in
Table II.

TABLE II
CONVERSION OF THE CLINICAL ATTRIBUTES INTO NUMERICAL LABELS.

Clinical Attribute Transformed (Original) Data

Age 0 (0-17), 1 (18-39), 2 (40-64), 3 (>65)
Infection Test Result 0 (Negative), 1 (Positive)
Sex 0 (Male), 1 (Female)

We applied online data augmentation during training. The
pipeline employed in this work consisted of random rotations
(up to 20 degrees), random vertical flips (with a probability of
0.5), Gaussian blur (kernel = 5×5, 0.1 < σ < 2) and random
color transformations (i.e., brightness, contrast, saturation, and
hue adjustments) with the same parameters described in the
literature [7]. We also applied a z-score normalization to
the images using ImageNet’s mean ([0.485, 0.456, 0.406]) and
standard deviation ([0.229, 0.224, 0.225]).

C. Training Details

1) K-fold Strategy: We implemented a k-fold strategy (k =
10) for all the experiments. For the single-task models, we
preserved the class distribution in the splits, while for the
multi-task (i.e., multi-label), we ensured that every class and
combination of classes were properly balanced. For each fold,
we retained 10% of the dataset as the test set to validate the
best model, and, we split the remaining dataset to achieve,
80% for train and 10% for validation. This division was done
in the dataset without the flipped images, and those were later
added to the subset where the non-flipped image was, to avoid
data leakage.

2) Training and Validation Pipeline: We trained the models
for a certain number of epochs (between 100 and 300) and
defined the optimal case for each. We initialized the mod-
els with ImageNet pre-trained weights. We have frozen the
backbone of the models during the first ten epochs. Regarding
loss functions, we used the binary cross-entropy for the binary
classification and multi-task (multi-label) models, and cross-
entropy for the multi-class models (age). To mitigate the
issues related to class imbalance, we used class weights in the
loss functions for all models. We used the adaptive moment
estimation (Adam) optimizer and defined the best hyper-
parameters (e.g., learning rate and weight decay) for each
model by monitoring the validation loss (i.e., the minimum).
We saved the best model according to the best value in the
validation loss and an “early-stopping” routine. We used a
batch-size of 16 for all the models.

3) Multi-task Optimization: Apart from the details de-
scribed above, we added a few improvements to the multi-
task models. We complemented the binary cross-entropy loss
with a new term that takes into account that the cost of
misidentifying a high-cost infection should be higher than that
of misidentifying a low-cost infection. Adding this term to
the loss makes sense because keratitis is common in LMICs,
meaning that an incorrect treatment plan will have severe



financial impacts on the patient and the healthcare providers.
The average cost of each infection was computed using the
insights provided by our clinical partners. To do so, we
multiplied the prices of the medicines used in each infection
(i.e., R$45.2 for bacterial keratitis, R$203 for fungal keratitis,
and R$95.5 for amoeba keratitis) by the number of flasks
of each medicine used and the maximum duration of the
treatment in months. We then divided these values by the
cost of all infections. The values obtained were considered
the hospital costs. After that, the combined loss was calculated
using Equation 1:

Ltotal = 0.8 · (Cw · LBCE) + 0.2 · (Hw · LBCE), (1)

where Ltotal is the total loss, Cw is the class weights, LBCE is
the binary cross-entropy loss, and Hw is the hospital weights
(described above). Finally, we integrated an adaptive threshold
solution to consider a certain probability of a prediction. In this
case, the optimal threshold would maximise the true positive
rate (TPR) and minimise the false positive rate (FPR). To find
this threshold, we computed Youden’s J for every threshold
value, comprising the receiver operating characteristic (ROC)
curves of each task. The threshold that maximised J was
then considered the optimal classification threshold for that
infection [3].

D. Evaluation Details

1) Performance Metrics: To evaluate the predictive per-
formance of the models, we computed the accuracy (ACC),
AUROC, balanced accuracy (BA), F1-score, mean absolute
error (MAE), precision, and recall [2]. During the training
phase, we used these metrics and the evolution of the loss (in
both training and validation splits) to understand the evolution
of the model. In the test set, we computed these metrics,
along with the confusion matrices (CFs) and the F1-score and
recall for each class (within the same label). For the multi-task
models, we also generated the joint CF of all infections. Lastly,
to understand the TPR and FPR, we plotted the ROC curves.
To ensure and validate the models’ diagnosis, we generated
saliency maps for every fold and one example of each class’s
positive and negative case.

2) Statistical Significance: Since we implemented a k-fold
strategy, we computed the average for all these metrics (and
confusion matrices) across folds. We computed a 95% normal
confidence interval (CI) for the results of each metric and
task, across models. After that, and only on models related to
keratitis classification, we studied the statistical significance
of the sex and age for the diagnosis. The goal of this task was
to understand how these parameters can impact the result and
make proper conclusions on the need for disentanglement of
patient features from the images before inputting them into the
model based on that. To achieve that, for each task and metric,
we grouped the age and sex subsets. For the sex analysis, since
only two independent groups were being compared, we used
the t-test, whereas, for the age analysis, Analysis of Variance
(ANOVA) was used. To account for the family-wise error

rate of conducting multiple tests on the same dataset, Holm-
Bonferroni Correction was implemented [5].

3) Patients’ Information Subsets: To evaluate the influence
of the age group and also the sex in the prediction of the
etiology, the F1-Score, recall, precision, AUROC, ACC, BA,
and MAE were computed by sex and age bin, for each task,
meaning that a comparison of performance could be done in
between sexes and ages for a specific task and metric, allowing
for a deeper understanding of the influence of this factors in
the classification.

IV. RESULTS AND DISCUSSION

We obtained the best results with the DenseNet121 back-
bone, trained for 200 epochs, using Adam optimiser with a
learning rate of 1× 10−6, and a weight decay of 1× 10−8.

A. Sex and Age Prediction

For the tasks of sex and age prediction, our results suggest
that the age bin is less predictable than the sex from the eye
photograph (see Figure 8). On the other hand, unexpectedly,
results for both tasks were fairly good, meaning that sex and
age can be derived from eye corneal photos, and potentially
influencing the prediction for keratitis, confirming the need for
subset analysis. A look at the AUROCs, we can see that for sex
the AUROC lies in 0.8790− 0.8994 and for age in 0.8331−
0.8624. For the MAE across folds, a CI of 0.2891 − 0.3114
was found, which is low. This potentially means that when an
incorrect classification happens, it does not occur for the most
erroneous case. To validate this assumption, we looked into
the CFs.

Fig. 8. Results for the sex and age prediction models.

B. Keratitis Classification

In the analysis of the results for the keratitis classification
models, we focused on the precision and recall for all the
etiologies because those were the metrics where the most



differences were found. We excluded the baseline approach
(single-task) from the pool of best models, since it needed to
run three times to output a complete diagnosis, and did not
use potential correlations between the etiologies to make the
prediction, which could jeopardize the multi-infection case.
From an attentive look at Figure 9, we realize that both Multi-
task V1 and V2 models had the worst results for amoeba when
compared to the models that had the optimal loss optimization.
Besides, we observe an increase in incorrect classification
(for all tasks) for the models that had the adaptive threshold,
portrayed by a decrease of recall for bacteria and amoeba and a
decrease in precision for fungi. Multi-task V1 and V2 with the
clinical loss (see Equation 1) attained very similar results, with
the V2 being slightly better for recall in fungi and amoeba,
and precision in bacteria. This model obtained AUROCs of

Fig. 9. Recall and Precision of all models. Note: ST–Single task, Mv1–
MultitaskV1, Mv2–MultitaskV2, Mv1CL–MultitaskV1 with clinical loss,
Mv2CL–MultitaskV2 with clinical loss, Mv1CLT–MultitaskV1 with clinical
loss and adaptive threshold, Mv2CLT–MultitaskV2 with clinical loss and
adaptive threshold

0.9448 − 0.9617 for amoeba,0.8395 − 0.8725 for fungi, and
0.7413 − 0.7740 for bacteria. If we focus our attention on
recall and precision, we observe that recall was especially
relevant for amoeba and fungi, and precision for bacteria
(possibly explained by the data imbalance). For instance, the
low values found for fungi mean that there are several false
negatives (FNs). This analysis is complemented with the CF
(see Table IV-B), which shows us that the model struggles with
predicting the positive class correctly (once again, possibly
due to data imbalance). Please note that we can derive similar
conclusions for amoeba and bacteria with respect to the false
positives (FPs). Looking at the extended CF (see Table IV),
we can see that incorrect classification often happens because
the model can not distinguish between a single or combined
infection: for instance, from all the fungi infections, 19 were
predicted as bacteria infections, 12 as fungi infections, and 21
as a combined infection of bacteria and fungi. These results
support the need for more data.

TABLE III
AVERAGE CFS FOR THE MULTI-TASK V2 MODEL TRAINED WITH THE

CLINICAL LOSS (SEE EQUATION 1), FOR THE DIFFERENT TASKS.

Task Actual/Predicted Negative Positive

Amoeba Negative 318.4 14.8
Positive 19.8 59.8

Bacteria Negative 31.1 65.7
Positive 14.8 301.2

Fungi Negative 292.0 22.8
Positive 45.8 52.2

TABLE IV
CONFUSION MATRIX FOR MULTI-TASK V2 MODEL TRAINED WITH THE

CLINICAL LOSS. NOTE: H–HEALTHY, B–BACTERIA, F–FUNGI,
A–AMOEBA, B,F–COMBINED INFECTION OF BACTERIA AND FUNGI,

F,A–COMBINED INFECTION OF FUNGI AND AMOEBA, B,A–COMBINED
INFECTION OF BACTERIA AND AMOEBA, B,F,A–COMBINED INFECTION OF

BACTERIA, FUNGI AND AMOEBA.

Label\Pred H B F A B,F F,A B,A B,F,A

H 0 0 0 0 0 0 0 0
B 4 193 2 2 24 0 9 0
F 0 19 12 0 21 0 2 0
A 4 13 1 11 0 0 11 0

B,F 0 20 0 0 24 0 0 0
F,A 0 0 0 0 0 0 0 0
B,A 1 5 0 2 0 0 30 0

B,F,A 0 0 0 0 0 0 0 0

C. Influence of Patient Features

We chose the best-performing methodology for the identity
feature evaluation. Given the interesting performance of the
sex and age prediction models (i.e., the model was detecting
identity features), we sought to assess if the classification
model was using these features to output its predictions (i.e.,
the introduction of bias).

1) Influence of Sex: Table V presents the summary of the
performance metrics for sex (i.e., p-values after correction).
We can observe that sex has an impact on the ACC of
the detection of fungi infection, with male sex having lower
values. Regarding the detection of amoeba infection, we found
a significant difference for F1-score, recall and BA. This can
potentially mean that the model is using features related to
the sex of the patient in the final predictions (especially for
amoeba), meaning that a disentanglement of these features
from the corneal eye photograph could boost the performance
of the model.

2) Impact of Age: Table V presents the summary of the
performance metrics for age (i.e., p-values after correction).
We found significant differences for all metrics across all age
groups, with the exception of BA (i.e., age features may play
a role in the prediction). The analysis of the values for the
detection of fungi infection reported the same as the detection
of bacteria infection, with all metrics exhibiting significant
differences across age groups. Regarding the detection of
amoeba infection, we found significant value for ACC. Please
note that we do not report AUROC values for this task because



of the lack of data on at least one age bin. Moreover, given
the class imbalance, we argue that feature disentanglement is
needed for this case, although an evaluation with a bigger and
balanced dataset should also be done.

TABLE V
CORRECTED P-VALUES FOR AGE AND SEX BY INFECTION TYPE.

Bacteria Fungi Amoeba

Metric Age Sex Age Sex Age Sex

F1-score 0.0001 1.000 7.70×10-16 0.2510 0.4555 0.0035
Recall 0.0153 1.000 1.63×10-12 0.7070 0.9099 0.0010
Precision 0.0029 1.000 2.93×10-20 0.1320 0.4946 0.2580
BA 0.7693 1.000 1.24×10-13 1.000 0.2418 0.0042
ACC 0.0006 1.000 6.83×10-16 0.0003 0.0055 0.6840
AUROC - 1.000 - 1.000 - 0.4810

An analysis of the results for the other frameworks revealed
similar patterns, making clear the need for further investigation
of both sex and age in a larger dataset.

V. CONCLUSIONS AND FUTURE WORK

Although the proposed solution has yielded good results,
several improvements could be made in the future to reduce
FPs for the detection of bacteria infection and FNs for the
detection of fungi and amoeba infections. As explained earlier,
we believe that the problem is caused by the lack of data on
fungi and amoeba infections, causing the model to not predict
these classes correctly. Since we do not train the model with
healthy patients, when this happens, the eye exams are often
classified as bacterial infections, causing FPs. Hence, the first
step in future work would be to either acquire more data or
artificially generate new images with generative adversarial
networks (GANs) or diffusion models. Another interesting
test would be to evaluate the performance of the model on
segmented images of the cornea, as well as test other state of
the art backbones. It would also be interesting to introduce the
sex and age of that patient as auxiliary inputs to the prediction
model and evaluate the performance. Lastly, the developed
work has proven that it is possible to predict the sex and
age of the patient based on an eye photograph. This could
mean that those identity features are present in the images,
introducing new biases to our methodology. The obtained p-
values pointed in that direction. To avoid those connections,
the disentanglement of identity features from the eye corneal
photographs could be relevant.

In conclusion, in this work, we demonstrated the effec-
tiveness and potential of deep learning solutions in advanc-
ing keratitis diagnosis and contributing to broader healthcare
improvements. The proposed solution achieved state-of-the-
art metrics for a multi-label diagnosis of bacterial keratitis,
fungal keratitis, and amoeba keratitis, with 95% confidence
intervals for AUROC of 0.7413 − 0.7740, 0.8395 − 0.8725,
and 0.9448 − 0.9617, respectively. When looking at the sex
and age performance, interesting AUROC values were found,
0.8790 − 0.8994 for sex and 0.8331 − 0.8624 for age. A
significant impact of sex for amoeba infections and age for

bacteria and fungi infections was found, meaning a bias
associated with patient features could be implied.
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