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Abstract

Deep learning methodologies have been very successful in a large num-
ber of tasks, sometimes surpassing human performance. One of the most
simple neural network architectures is the multi-layer perceptron (MLP)
which tries to mimic the brain in some ways. These methodologies are
generally trained using gradient descent as they are differentiable. In re-
cent years, a new methodology called spiking neural networks (SNNs)
was proposed. These networks can be seen as a more biologically realis-
tic approach than artificial neural networks (ANNs), as they use discrete
spikes to transmit information, instead of continuous values. In this paper,
we study these networks, and present results achieved by training these
models. We also evaluate several information theory quantities such as
entropy and mutual information of these networks to extract the relation-
ship between the inputs and the outputs.

1 Introduction

In recent years deep learning methodologies have proved to be very suc-
cessful in a large number of problems, namely classification in computer
vision tasks, sometimes challenging human performance. One of the most
simple neural network architectures is the multi-layer perceptron (MLP).
These kinds of networks are trained using the backpropagation algorithm,
since the loss function that we are trying to minimize is differentiable,
allowing us to calculate the gradients of the weights and optimize them.
Neurons in a MLP contain single and continuous activations. Biolog-
ical brains, on the other hand, use discrete spikes to transmit informa-
tion. With this in mind, a new methodology called spiking neural net-
works (SNNs) was proposed. SNNs can be seen as a more biologically
realistic approach than artificial neural networks (ANNs). SNNs typi-
cally require fewer operations, are more energy-efficient, and also more
hardware-efficient, making them very appealing for the future [9]. One of
the current problems with these kinds of networks is the difficulty in train-
ing them since they are non-differentiable and therefore the backpropaga-
tion algorithm cannot be used. SNNs can be trained using supervised or
unsupervised approaches. Currently, SNNs are still inferior in terms of
accuracy compared to ANNs, but the gap is closing due to advances in re-
cent years. The code related to this paper is available in a public GitHub
repository1.

2 Fundamental Concepts of SNNs

2.1 The Learning Process in SNNs

The spike trains are formally represented as sums of Dirac delta (δ (·))
functions and do not have derivatives. Therefore, gradient-based opti-
mization rules may not be trivial to implement in SNNs. However, sim-
ilarly to ANNs, the main objective is to learn the best synaptic weights.
One of the paradigms in computational neuroscience relies on the con-
cept of spike-timing-dependent plasticity (STDP). The intuition behind
this approach is that the weight (synaptic efficacy) connecting a pre- and
post-synaptic neuron is adjusted according to their relative spike times
within an interval of milliseconds in length [1]. To understand this con-
cept, we need to revisit Biology: if we know that the pre-synaptic neu-
ron fires for a brief time (e.g., ≈ 10ms) before the post-synaptic neuron,

1https://github.com/TiagoFilipeSousaGoncalves/
computational-neuroscience

the weight connecting them is strengthened; on the other hand, if the pre-
synaptic neuron fires briefly after the post-synaptic neuron, then the causal
relationship between the temporal events is nonsense and the weight con-
necting these two neurons is weakened.

2.2 Fundamental Concepts of Information Theory

We present the fundamental concepts of information theory, needed to un-
derstand the intuition behind our analysis. All the concepts are presented
as in [2]. The definition of entropy is the expected information content of
random variable X . It is defined as:

H(X) =−∑
x

pX (x)log2[pX (x)] (1)

The joint entropy of two random variables X and Y is defined as:

H(X ,Y ) =−∑
x,y

p(x,y)log2[p(x,y)] (2)

Mutual information refers to the amount of information that can be
obtained about one random variable by observing another random vari-
able. The mutual information between two random variables X and Y, is
related to entropy as follows:

I(X ;Y ) = H(X)+H(Y )−H(X ,Y ) (3)

3 Methodology

We performed experiments with three benchmark data sets: MNIST [7],
Fashion-MNIST [10] and CIFAR-10 [6]. We follow the examples pro-
vided in [5]. This architecture consists of two layers: 1) an input layer,
that contains 28× 28 or 32× 32 neurons (i.e., one neuron per pixel); 2)
a processing layer, composed of a variable, but equal, number of excita-
tory and inhibitory neurons [3]. Each input image is modeled as a Pois-
son spike-train and is fed into the excitatory neurons of the second layer.
These excitatory neurons are then connected in a one-to-one fashion to
inhibitory neurons (i.e., each spike in an excitatory neuron will trigger a
spike in its corresponding inhibitory neuron). On the other hand, each of
the inhibitory neurons is connected to all excitatory ones, except for the
one from which it receives a connection.

3.1 Training

This approach uses the integrate-and-fire (IF) spiking neuron model, which
is given by Equation 4:

dvmem(t)
dt

= ∑
i

∑
s∈Si

wiδ (t − s) (4)

where vmem is the membrane voltage, t is the time, wi is the weight of the i-
th incoming synapse, δ (·) is the Dirac delta function, and Si =

{
t0
i , t

1
i , ...

}
contains the spike times of the i-th presynaptic neuron. A spike is gener-
ated if the membrane crosses a given threshold vthr; the membrane voltage
is then reset to a reset potential vres. As in [4], the continuous-time de-
scription of this model is discretised into 1ms time-steps. The synapses
from input neurons to excitatory neurons are learned by STDP. The weight
dynamics are computed using synaptic traces, as proposed in [8]. This ap-
proach ensures that besides the synaptic weight, each synapse keeps track
of another value (i.e., the presynaptic trace xpre), which models the recent



Table 1: Relationship between the index of the neurons that spiked on the output layer, and the index of the output neurons that have mutual
information with the input of the network.

MNIST Fashion-MNIST CIFAR-10

Class
Output neurons

that spiked
Neurons with

mutual information
Output neurons

that spiked
Neurons with

mutual information
Output neurons

that spiked
Neurons with

mutual information
0 {3, 4, 29, 31, 52} {3, 4, 29, 31, 52} {22, 24, 64, 67, 85} {22, 24, 64, 67, 85} {1, 18, 20, 90} {1, 18, 20, 90}
1 {8, 97} {8, 97} {7, 11, 16, 65, 67, 72, 87} {7, 11, 16, 65, 67, 72, 87} {} {}
2 {23, 71, 85} {23, 71, 85} {4, 12, 29, 32, 66, 71} {4, 12, 29, 32, 66, 71} {18} {18}
3 {2, 7, 14} {2, 7, 14} {11, 65, 67, 72, 87} {11, 65, 67, 72, 87} {45, 73} {45, 73}
4 {32, 65, 80, 94} {32, 65, 80, 94} {} {} {} {}
5 {32, 37, 67, 75, 78} {32, 37, 67, 75, 78} {} {} {} {}
6 {17, 28} {17, 28} {2, 15, 19, 39} {2, 15, 19, 39} {11, 28} {11, 28}
7 {18, 26, 92, 99} {18, 26, 92, 99} {77} {77} {} {}
8 {11, 33, 35, 90} {11, 33, 35, 90} {3, 21, 96, 97} {3, 21, 96, 97} {1, 18, 23, 36} {1, 18, 23, 36}
9 {38, 65, 94} {38, 65, 94} {0, 21, 92} {0, 21, 92} {1, 14, 18, 23} {1, 14, 18, 23}

presynaptic spike history. Hence, every time a presynaptic spike arrives
at the synapse, the trace is increased by 1 and xpre decays exponentially.
The weight change ∆w provoked by the arrival of a postsynaptic arrival is
computed according to Equation 5:

∆w = η(xpre − xtar)(wmax −w)µ (5)

where η is the learning-rate, wmax is the maximum weight, µ determines
the dependence of the update on the previous weight, and xtar is the target
value of the presynaptic trace at the moment of a postsynaptic spike [3].
From this result, we may conclude that the higher the target value, the
lower the synaptic weight will be. Also, this offset promotes that presy-
naptic neurons that rarely lead to the firing of the postsynaptic neuron
will become more and more disconnected. This is particularly useful if
the postsynaptic neuron is only rarely active. The inputs of the network
are based on the MNIST, Fashion MNIST, and CIFAR-10 datasets, each
containing 10 classes. After training is done we assign a class to each
neuron based on the highest average response for each of the 10 classes.
This is the only time that the labels are used since they are not used for
the training of the synaptic weights. To predict the class of the input, we
calculate the average firing rate of the neurons of each class and choose
the class with the highest average firing rate.

3.2 Applying information theory to SNNs

After training the model, we generate predictions for the test set. We
record samples of the inputs (i.e., one image per label) and samples of
the outputs (i.e., the spike train generated by the output neurons for a
given input image). With this data, we performed simple tests based on
information theory:

1. Computation of the entropy of the input spike train and output
spike train: we have the distribution of spikes per neuron along
time. Hence, we can compute, per neuron, the probability of spik-
ing/ not spiking for input and output neurons.

2. Computation of the mutual information between the spike trains
of the input and output neurons: from the previous point, we
obtain the marginal distributions of the input and output neurons.
To compute the mutual information between the input and output
neurons, we need to compute the joint distribution P(i,o) which
is necessary for the computation of the joint entropy H(i,o). We
compute the mutual information between a single output neuron
and a single input neuron. If the mutual information between a
pair of neurons is greater than zero, it means that those neurons
have information in common. Therefore, we sum all the single
contributions from the input neurons related to an output neuron,
thus, obtaining a final value for that output neuron.

4 Results and Discussion

Table 1 presents the set of indices of the neurons that spiked on the out-
put layer and the set of indices of the output neurons that have mutual
information with the input of the network. The SNN obtained an accu-
racy of 72% on MNIST, 46% on Fashion-MNIST and 9% on CIFAR-10.
An extended analysis of the results is publicly available in our extended
report2.

2https://github.com/TiagoFilipeSousaGoncalves/
computational-neuroscience/blob/master/report.pdf

5 Conclusions and Future Work

This work presented an exploratory study with the SNN model proposed
by [4] in three benchmark data sets. We computed the entropy of the
input neurons, the entropy of the output neurons, and the mutual informa-
tion between the input neurons and the output neurons, for a sample of a
given input. Results suggest that the output neurons that present higher
values of mutual information related to the input neurons are the ones that
fire when given an image of a certain class, which confirms our initial
intuition. Further work should be developed to the improvement of the
accuracy performances and the analysis of the impact of this metric on
the information theory analysis quantities.
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