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Abstract

Most of the available systems rely on fingerprint recognition and have
shown to be reliable in terms of accuracy, speed and purported security.
However, they also present several vulnerabilities against spoof attacks.
To overcome this flaw, several automated spoofing detection models have
been developed, but they end up assuming that spoof detection is a binary
closed-set problem, which is not realistic. Recent works have proposed
the use of adversarial methodologies to improve the model’s generalisa-
tion capacity to unseen spoof attacks. Following this research line, we
performed a study on the application of generative adversarial neural net-
works (GANs) for the generation of synthetic data to be employed during
the model’s training. We hypothesise that by using GANs, one could learn
a distribution that could contain all possible spoofing attacks, thus open-
ing the possibility to learn classifiers that could be more robust. In this
work, we optimised a GAN and conditional GAN (cGAN) to generate
synthetic images of real and fake fingerprints and used this data in the
training of classifiers for the detection of single spoofing attacks.

1 Introduction

Several studies revealed that recognition systems based on fingerprint
recognition are highly vulnerable to spoof attacks (e.g., a 2D printing with
conductive ink to replicate the fingerprint of a victim left behind on their
keyboard) [1]. Therefore, intending to overcome this flaw, several auto-
mated spoofing detection systems have been developed, to detect and flag
spoof attacks before performing biometric authentication [1]. The main
drawback about these systems is that they assume that spoof detection is a
binary closed-set problem, i.e., live or single-material spoof [1]. For this
reason, most of the methods may be overestimated regarding their perfor-
mance metrics, since they end up using only one type of spoof samples
to train and test the models [6]. If we take into account the diversity of
materials (with different mechanical and optical properties) that can be
employed to produce different spoofs, we may conclude that this may be,
in fact, an open-set problem, where we should assume a priori that we do
not know all the existing spoofs [1]. The problem of presentation attack
detection (PAD) generalisation is not new. Besides, [9] stated that every
time we present a new presentation attack (PA) species in the test phase,
the performance of the classifier drops. Several methodologies based on
one-class classification for the bona fide (BF) class or adversarial train-
ing [1] have been proposed to increase the robustness of the classifier.
However, the current paradigm has not changed: most of the recent pro-
posals either rely on binary classification approaches or use part of the
data available at training time to design the models. These two possi-
bilities still make very optimistic assumptions regarding the attacker [5].
Following the work proposed by Pereira et al. [5], we intend to extend the
adversarial methodology and use generative adversarial networks (GANs)
to 1) increase the quality of the generated PA species; and 2) increase the
robustness of the PAD method against unseen attacks. The intuition be-
hind this approach is supported by the following hypothesis: if one could
learn a distribution that contains all possible PAs, then it should be pos-
sible to learn a function that could correctly discriminate against BF and
unseen PAs, without the need of explicitly using them during the training
phase. The code related to this work is available in a GitHub repository 1.

1https://github.com/leonardogomesc/Image-to-image-Generativ
e-Adversarial-Network

2 Related Work

Generative Adversarial Networks Generative Adversarial Networks
(GANs) [2] have become very popular for image generation, and some
variations to the original methodology have been proposed. It consists
of two networks, a generator, and a discriminator. The goal of a GAN
is to train a generator that creates images that are indistinguishable from
images in the train set. The generator is constantly trying to generate
images that “fool” the discriminator into thinking they are real, and the
discriminator is constantly trying to distinguish between real images and
generated images.The loss function of a GAN can be written as:

L= Ex[logD(x)]+Ey[log(1−D(G(y)))] (1)

where G is the generator, D is the discriminator, x is a real image and y is
a noise vector. The generator is optimised to minimise this loss function,
while the discriminator is optimised to maximise it.

Conditional Generative Adversarial Network Since the input of the
network is a random vector we have limited control over the generated
images, which would be very useful for some problems. Conditional Gen-
erative Adversarial Networks (cGANS) [4] aim to solve this problem by
giving the generator and the discriminator an additional input, a label that
allows us to condition the generator to output an image belonging to a
certain class or having a specific attribute present. The noise vector is still
used to allow for some variation in the generated images belonging to the
same class. The loss function of a cGAN can be written as:

Lc = Ex,y[logD(x,y)]+Ex,z[log(1−D(x,G(x,z)))] (2)

where x is a class label, y is a “real” image from class x and z is a ran-
dom noise vector. The generator (G) tries to minimise this loss, and the
discriminator (D) tries to maximise it. As training progresses the gen-
erator will output increasingly realistic images until they are practically
indistinguishable from the images belonging to the train set.

3 Methodology

Data We used the LivDet2015 dataset, which was developed for the
2015 edition of the Liveness Detection Competition. This dataset is com-
posed of five sub-datasets: Cross Match, Digital Persona, Green Bit, Hi
Scan, and Time Series [6]. Our data processing pipeline is employed as
follows: 1) images are converted into the grey-scale format; 2) images
are then re-scaled into 110% of their original size through the addition
of padding, with pixel values = 255; 3) a centre-crop operation is then
applied to assure that images keep their final size as 64×64 and that the
fingerprint is in the centre of the image as well; 4) the pixel values of the
images are then re-scaled to be in the closed interval of [−1,1].

GAN and cGAN The GAN model we use in this work is based on the
class of Deep Convolutional GANs (DCGANs) [7], and the cGAN model
uses the U-Net architecture for the generator [8]. We start the training of
the GAN with the generation of a latent-space vector nz of size 64 filled
with random numbers sampled from a normal distribution with mean 0
and variance 1, i.e., nz ∼ N (0,1). This vector is given as input for the
generator G(·), which will generate a synthetic fingerprint image G(nz).
We then feed the discriminator D(·) with G(nz) to obtain its prediction
D(G(nz)). The training of the cGAN starts with the generation of a noise



Figure 1: Examples of images generated by our GAN model per epoch (real fingerprints from the Cross Match dataset).

Table 1: Accuracy results obtained for the M1–M3 models for the different datasets and related materials. Best results highlighted in bold.

Material / Dataset
Cross Match Digital Persona Hi Scan

M1 M2 M3 M1 M2 M3 M1 M2 M3

Ecoflex 0.9130 0.8859 0.8232 - - - - - -
Playdoh 0.9568 0.8787 0.9062 - - - - - -
Latex - - - 0.9648 0.9640 0.9496 0.9752 0.9744 0.9712
Gelatine - - - 0.9024 0.9112 0.9160 0.9144 0.9008 0.9064
Wood Glue - - - 0.9384 0.9392 0.9384 0.8600 0.8704 0.8776

vector nz with a dimension of 64×64×1, the same dimensions as the in-
put image x (bona fide fingerprint). The noise vector is filled with random
numbers sampled from a normal distribution with mean 0 and variance 1,
i.e., nz ∼N (0,1). Then it is concatenated to the input image in the chan-
nels dimension and given to the generator G(·), which will generate a
synthetic fingerprint image G(x,nz). We feed the discriminator D(·) with
x and G(x,nz) to obtain its prediction D(x,G(x,nz)). The discriminator is
trained to classify the image y in D(x,y) as being real or generated.

Fingerprint Presentation Attack Detection For the fingerprint presen-
tation attack detection (FPAD) task, we used DenseNet121 [3] as back-
bone. We added a single neuron (linear layer) with the sigmoid activation
at the end of the architecture as the classifier. Regarding data augmen-
tation, we employ three different strategies: 1) Baseline training with-
out data augmentation (M1); 2) Training with synthetic images generated
with the GAN model, in which we add new images (bona fide and PA)
generated with the different GAN models to the train set (M2); 3) Train-
ing with synthetic images generated with the cGAN model, in which we
add new images (PA only) generated with the cGAN models to the train
set (M3).

4 Results and Discussion

GAN and cGAN Figure 1 shows example images generated by our
GAN model in different training epochs. When the GAN reaches equi-
librium, we can observe that the synthetic image is now more realistic,
whether it is from the bona fide or the PA classes. The cGAN models
shows similar behaviour. Nevertheless, the process of generating new
samples helped the training of the FPAD classifier in some cases.

FPAD Results Table 1 presents the accuracy results for the M1–M3
models. Regarding the performance of the FPAD models with or without
data augmentation strategies based on a GAN or a cGAN, it is still not
possible to conclude whether or not these strategies improve the model’s
predictive performance, however, one may observe that there is no clear
evidence that their performance gets worse. Hence, this may suggest that
the synthetic data we add during training may be part of the same distri-
bution as the original data.

5 Conclusions and Future Work

Current results suggest that the predictive performance of the classifier is
not jeopardised, which means that the synthetic data may be part of the
same distribution as the original data. It is important to note that these
experiments do not take into account unseen attacks (i.e., models were
just tested with the PAs that they were trained with). Future work should
be devoted to improving the architectures of both the GAN and cGAN in
the sense that they could be trained with higher resolutions.
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