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ABSTRACT 

Semantic segmentation consists of classifying each pixel according to a set of classes. This process is particularly 

slow for high-resolution images, which are present in many applications, ranging from biomedicine to the automotive 

industry. In this work, we propose an algorithm targeted to segment high-resolution images based on two stages. During 

stage 1, a lower-resolution interpolation of the image is the input of a first neural network, whose low-resolution output 

is resized to the original resolution. Then, in stage 2, the probabilities resulting from stage 1 are divided into contiguous 

patches, with less confident ones being collected and refined by a second neural network. The main novelty of this 

algorithm is the aggregation of the low-resolution result from stage 1 with the high-resolution patches from stage 2. We 

propose the U-Net architecture segmentation, evaluated in six databases. Our method shows similar results to the 

baseline regarding the Dice coefficient, with fewer arithmetic operations.  

Keywords: autonomous driving, bioengineering, deep learning, iterative inference, semantic segmentation.  

 

1. INTRODUCTION  

Segmenting images using neural networks can be time-consuming and requires a lot of memory, especially when 

working with high-resolution images [1], common in the biomedical area due to high-resolution digital microscopes and 

in autonomous driving applications. 

Neural networks for segmentation, such as the U-Net [2], produce a probability, for each pixel, of belonging to the 

region of interest. A common practice, when the image is high resolution, is to split the image into patches and process 

each patch separately [3]. Such approach has two problems: (1) it spends as much time in hard-to-segment regions as it 

does in easy-to-segment regions where there is nothing of relevance; (2) the boundary between patches is a problem and 

has to be dealt with in a special way. 

Therefore, the idea is to produce an iterative segmentation method for neural networks, whose simplified overview is 

presented in Figure 1. Iterative segmentation methods already exist [4]–[7], but their focus is on improving the quality of 

the segmentation, not the speed. Our proposal is applicable to every type of high-resolution image, but it is tested over 

two types of images (biomedical and autonomous driving). 

Besides this Introduction, the paper is organized as follows: Section 2 covers the related work; Section 3 explains the 

proposed algorithm; Section 4 presents the details of our implementation; Section 5 provides and discusses the results 

and Section 6 concludes the paper and suggests future work directions. The code related to this paper is publicly 

available1. 

 

Figure 1.  Simplified overview of the work. 

 

 
1 https://github.com/dianartsilva/two-stage-segmentation 



 

 
 

 

2. RELATED WORK 

2.1  Image Segmentation 

Image segmentation is the process of clustering an image into regions of interest (ROI) so that every pixel belonging 

to an ROI should be similar in terms of several characteristics (e.g., color, texture, shape or intensity) [8], [9]. The 

development of novel artificial intelligence techniques allows us to divide image segmentation methods into traditional 

and deep-based approaches. Traditional segmentation techniques are iterative, often rely on domain knowledge and 

benefit from feature engineering techniques to achieve their final results [10]. Examples of these approaches are: 

thresholding [11], [12], edge-based [13], [14], region-based [15]–[18], deformable models [19], [20] or graph cuts [21], 

[22]. Deep-based approaches apply deep neural networks, often trained end-to-end (i.e., these frameworks receive an 

image and output a segmentation mask). Long et al. [23] proposed the Fully Convolutional Network architecture, 

considered the pioneering successful approach to deep-based image segmentation. Following this methodology, Ciresan 

et al. [24] and Ronneberger et al. [2] proposed improved models for biomedical use-cases, being the last (i.e., U-Net) 

one of the most widely used backbone architectures. The popularity of U-Net relies on the short and long skip-

connections, which directly connect the feature maps of the encoder to the analogous feature maps of the decoder, 

preventing the loss of information [2]. Nevertheless, there are other methodologies that are worth our attention: the 

Global Convolutional Network [25], proposed by Peng et al., distinguishes from its predecessors by using large 

convolutional kernels; and DeepLabv3+, proposed by Chen et al. [26], revisited the concepts of atrous convolution and 

spatial pyramid pooling. In all these models, segmentation is trained in an iterative manner and inferred in one step. 

2.2  Iterative Approaches 

Applying deep-based models to high-resolution images is computationally expensive. For instance, in computational 

pathology, one of the main limitations is related to the large file size due to the high-resolution (and different 

magnifications) of the whole slide images [27], [28]. In these cases, it is common to employ a multiple instance learning 

strategy [29], where the large inputs are divided into smaller inputs [30]. These smaller inputs are processed by a deep-

based model and the individual results are aggregated by a scoring function. On the other hand, another possible solution 

may be to implement iterative methodologies, thus revisiting the traditional image segmentation pipeline. Following this 

idea, previous works have tried to make the U-Net iterative. Fernandes et al. [4] propose having a neural network that 

acts as an oracle: given an image and segmentation pair, the oracle is trained to predict a score of their fitness. On 

inference, the oracle is used to iteratively modify the segmentation in the direction that improves the score. Kim et al. [5] 

propose a recurrent version of the same idea: the image and segmentation are received as a pair and the neural network 

predicts a new segmentation. This step can be repeated as many times as desired so that the new segmentation is again 

used as input to the model, producing a new segmentation. This idea is improved by Wang et al. [6] and generalized to 

any task by Banino et al. [7]. 

There are works that focus on improving training and/or inference time, typically by working with multiple scales, 

but not on segmentation tasks. For example, due to computational constraints, Google AI performs alpha matting on 

mobile devices (i.e., extracting a foreground object) by a two-stage process whereby a neural network performs an initial 

step, and a secondary network is used only on any areas that might require further work [31]. A similar approach has 

been used for range estimation by Miangoleh et al. [32]. There are works that have used multiple scales for segmentation, 

but the focus is on the metric performance, not on reducing inference time [1], [33]. One recent work proposes 

combining iterative clustering and deep learning, but again the focus is on the metric performance [34]. 

In many bioengineering applications, images are very large (high-resolution) and segmentation is costly. For that 

reason, patch-based methods are common. In these approaches, images are divided into several, smaller patches that are 

possible for neural networks to process [3]. Our proposal is motivated by these works, but it is inspired by the techniques 

mentioned in the previous paragraph. Similar work to our own, but for the purpose of image classification, is [35], where 

they use a neural network with multiple scale inputs; these inputs are decided by attention mechanisms. 

 

3. PROPOSAL 

Our proposal consists of elaborating a new segmentation method based on two stages: (1) using a first neural network 

to segment a low-resolution version of the image; (2) based on the probabilities produced by this neural network, identify 

poorly segmented image patches and use a second neural network to refine these patches. 



 

 
 

 

The proposed idea is illustrated in Figure 2. The input image, with an initial resolution of ℎ𝑖𝑠𝑖𝑧𝑒 × ℎ𝑖𝑠𝑖𝑧𝑒  (see Table 

1), is downsampled by a factor of 1/8 in each image dimension (width and length). This transformed image is the input 

of U-Net #1, whose output is a low-resolution probability map which is then upsampled to the original resolution. This 

high-resolution probability map is divided into non-overlapping contiguous square patches with size ℎ𝑖𝑠𝑖𝑧𝑒/𝑁𝑝, where 

𝑁𝑝 is the number of patches in each image dimension (for instance, 𝑁𝑝 = 6 divides the image into 𝑁𝑝
2 = 36 equal-sized 

patches, 6 in each dimension, as observed in Figure 2). Each patch is evaluated regarding its average pixel-value (mean): 

the 𝑁𝑝 patches which reported the lowest |𝑚𝑒𝑎𝑛 − 0.5| values are then selected for U-Net #2. The final segmentation 

result is given by the output of U-Net #1 with the refined patches obtained by U-Net #2. 

 

Figure 2.  Two-stage segmentation. 

 

4. IMPLEMENTATION 

4.1  Data 

To validate the performance of the developed method, we used data from 6 different datasets – 4 covering 

biomedical images and 2 covering driving scenarios – in order to ensure the algorithm implemented was data-

independent. Further details regarding each dataset, such as the total number of images (N), the average image resolution 

(Avg Res) and the average percentage of foreground values relative to the entire image (% Fg) are presented in Table 1. 

The biomedical datasets contain dermoscopic (PH2), fundus imaging (RETINA), and histological (SARTORIUS and 

BOWL2018) images. The goal of the SARTORIUS dataset is to segment neuronal cells from phase-contrast microscopy 

images, while BOWL2018 aims to segment the nuclei from different types of cells. The images of the latter dataset were 

acquired under a large set of conditions regarding magnification and modality (bright-field/fluorescence). 

The autonomous driving datasets used were KITTI and BDD100K, comprising real driving scenarios acquired from 

different locations. In these datasets the task is to segment vehicles. In all cases, the task is binary segmentation. 

U-Net #2  

S
T

A
G

E
 2

 

Patch Division Patch Selection 

Patch Substitution 

U-Net #1  

S
T

A
G

E
 1

 

×
1

8
 

× 8 

× 8 

×
1

8
 

ℎ
𝑖 𝑠

𝑖𝑧
𝑒
 

ℎ
𝑖 𝑠

𝑖𝑧
𝑒
 

ℎ𝑖𝑠𝑖𝑧𝑒  ℎ𝑖𝑠𝑖𝑧𝑒  

𝑁𝑝 

𝑁𝑝 



 

 
 

 

Every dataset was randomly divided into 70% of the total images being training data and 30% being test data. To 

homogenize the resolution, all the images from the same dataset were resized to a square image with the length of ℎ𝑖𝑠𝑖𝑧𝑒  

– an even value, preferably a power of 2, close to both image dimensions of the average resolution of the dataset. The 

ℎ𝑖𝑠𝑖𝑧𝑒  value used for each dataset is also presented in Table 1. 

 

Table 1.  Datasets for semantic segmentation. 

Dataset N Avg Res 𝒉𝒊size % Fg Example 

PH2 [36] 200 575 x 766 768 31.4 

 

RETINA* [37]–[39] 66 745 x 782 768 7.3 

 

SARTORIUS [40] 606 520 x 704 512 10.5 

 

BOWL2018 [41] 670 328 x 369 256 13.6 

 

KITTI [42] 200 375 x 1271 512 6.6  

BDD100K [43] ≈ 8k 720 x 1280 768 9.5 
 

 

4.2  Model 

The encoder path of both U-Nets architectures contained five 2D convolutions, with kernels of size 3×3 and stride 2, 

followed by the activation function ReLU. The number of kernels started at 64 and doubled at each layer. The decoder 

path consisted of five 2D transposed convolutions with equal kernel size and stride from the contracting path, each 

preceding a ReLU function. The number of kernels was reduced in half for each layer of the expansive path. A 1×1 

convolution operation was applied in the final layer to obtain 1 as the output number of classes. 

The pooling operation observed in the original model [2] was replaced by convolution operations with stride 2, which 

downsamples the size of the feature map to half while duplicating the number of feature channels. 

4.2.1 Training 

The loss used consisted of an unweighted sum between two losses, ℒ(𝑦, �̂�) = ℒ𝑓 (𝑦, �̂�) + (1 − 𝐷(𝑦, �̂�)), where ℒ𝑓 is 

the focal loss [44] and the other term corresponds to the inverse of the Dice coefficient (see Section 4.3). The focal loss 

is a weighted version of cross-entropy that is helpful in such situations of imbalance (notice in Table 1 that the % Fg 

values are well below 50%). In fact, some of our tests showed it worked better than vanilla cross-entropy. The focal loss 

parameters γ and α used were 2 and 0.25, respectively, corresponding to the recommended values from the authors. 

* Composition of three datasets: CHASE_DB1, DRIVE and STARE. 

 



 

 
 

 

Adam was used as the optimizer with a batch size of 64 and a learning rate of 0.0001. The models were trained for 

enough epochs to converge (200 for U-Net #1 and 1 000 for U-Net #2). U-Net #2 was trained for more epochs since in 

each epoch only a small region of each image was selected. 

The following data augmentation transformations were applied: horizontal flip; contrast/brightness modification 

between -0.1 and 0.1; and random rotation, with limits -180º and 180º. This last transformation was only applied to the 

biomedical datasets, which are microscopic, dermoscopic and retinal images, therefore the model should be invariant to 

rotation. Every aforementioned transformation had a probability value of 0.5. 

In addition to these, resizing and random cropping operations were added to train each U-Net accordingly to their task: 

• Baseline (BL): All images were resized to the ℎ𝑖𝑠𝑖𝑧𝑒 described in Table 1. 

• Training U-Net #1 (low resolution): Images were resized to (1/8 + 5%)ℎ𝑖𝑠𝑖𝑧𝑒 , followed by random cropping of 

dimensions corresponding to 1/8 of ℎ𝑖𝑠𝑖𝑧𝑒. 

• Training U-Net #2 (patches): Images were resized to ℎ𝑖𝑠𝑖𝑧𝑒  in both dimensions, with a random crop to a square of 

length  
1

𝑁𝑝
ℎ𝑖𝑠𝑖𝑧𝑒.  

4.3  Metrics 

In the case of a segmentation task, metrics such as accuracy (globally and each class individually) and the Dice 

coefficient are the most used to evaluate a model’s result. The Dice coefficient, also known as the Sörensen index, is a 

measure that derives from the original quotient of similarity: 𝐷𝑖𝑐𝑒 = 2 ∙ 𝑇𝑃/(2 ∙ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁), where 𝑇𝑃, 𝐹𝑃, and 

𝐹𝑁 are true positives, false positives and false negatives, respectively. 

For evaluation of speed, metrics such as inference time – the time required for a deep neural network to apply the 

trained model to new data – and floating-point operations per second (FLOPS) are suitable for the task. 

 

5. RESULTS AND DISCUSSION 

For each dataset, the average Dice coefficient and FLOPS were computed to evaluate the model’s performance for 

the 𝑁𝑝values 2, 4, 8, and 16. Note that, in Figure 3(a) and Figure 3(b), 𝑁𝑝 = 16 was not computed for some datasets 

since the resulting patch size was not divisible by 25, 5 being the number of encoder layers of our U-Net model. The 

baseline (BL) model represents the traditional approach consisting of the same U-Net architecture using the original 

images as input. 

Figure 3(a) shows the Dice coefficients for the different experiments. These results suggest there are apparently three 

different behaviors, which might indicate in which cases the method makes more sense to use: (1) PH2 and BDD100K; 

(2) KITTI and RETINA; (3) SARTORIUS and BOWL2018. 

PH2 and BDD100K: Interestingly, these datasets showed a Dice coefficient that was actually better during U-Net #1 

(S1) relative to the baseline (BL), but then plateaued. In the case of PH2, lowering the resolution seems to help segment 

the lesions, in particular the ones which are not so homogeneous and might induce the model to segment them in a not-

so-accurate way. The plateau registered might be because U-Net #2 has as input patches that only contain a portion of a 

skin lesion, therefore losing part of the context and compromising its performance. Contrarily to PH2, the vehicles from 

the BDD100K dataset could fit entirely in a single patch, hence having better chances of a good segmentation. Because 

most of the images from this dataset have the vehicles in a center plane, as seen in Figure 4, the division of the total 

image in 16 patches would be the best-case scenario, being able to segment the center in a way 𝑁𝑝 =  2 could not, while 

giving each patch the most context for segmentation when compared to 𝑁𝑝  =  8. 

KITTI and RETINA: As expected, there is a drop in the Dice coefficient value between the baseline (BL) and U-

Net #1 (S1). This is particularly pronounced for the RETINA dataset due to the small width of the retinal blood vessels – 

the reduction of the image resolution by a factor of 8 probably compromises the differentiation of such structures. U-Net 

#2 greatly improved on S1, actually surpassing the baseline, with the best Dice coefficient for 𝑁𝑝 = 2. KITTI, a similar 

dataset to BDD100K, was expected to also present similar behavior. However, the average resolution values for the 

images in each dataset might play a bigger role in S1, compromising the results of datasets with smaller resolutions.  

Figure 5 presents the results of our method’s pipeline for a KITTI image.  



 

 
 

 

BOWL2018 and SARTORIUS: Results for these datasets were worse for our method than the baseline. The 

problem comes from the U-Net #1 (S1) segmentation, as illustrated by the example in Figure 6. It seems to be the case 

that in datasets containing images with many dispersed cells, which are relatively small, U-Net #1 results are much 

worse than the baseline. While U-Net #2 is able to improve upon it, it is not sufficient to overcome this fact. 

As expected, there is usually a noticeable gain between the U-Net #1 and U-Net #2 models. Increasing the number of 

patches 𝑁𝑝 either results in a plateau or in reduced performance. In addition, S1 is the most critical stage of our method, 

being particularly influenced by the downsampling factor and the size of the object to segment. Furthermore, the results 

from the last stage are mostly affected by the patch division and the loss of context from U-Net #2.  

 

 

Figure 3(b) depicts the FLOPS performed by the neural networks, as measured using the profiler from e-Lab2. 

FLOPS per convolution is given by 𝐹𝐿𝑂𝑃𝑐𝑜𝑛𝑣 = 𝐹 ∙ 𝐹 ∙ 𝐶𝑖𝑛 ∙ 𝐻𝑜𝑢𝑡 ∙ 𝑊𝑜𝑢𝑡 ∙ 𝐶𝑜𝑢𝑡,  where 𝐹 ∙ 𝐹 is the spatial dimension of 

the filter,  𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡  are the number of input and output channels, respectively, and 𝐻𝑜𝑢𝑡 ∙ 𝑊𝑜𝑢𝑡 is the output shape 

[45]. As the number of patches (𝑁𝑝) increases, the size of each patch decreases quadratically, (ℎ𝑖𝑠𝑖𝑧𝑒 𝑁𝑝⁄ )2. Since the 

architecture is the same, 𝑁𝑝  only affects 𝐻𝑜𝑢𝑡 ∙ 𝑊𝑜𝑢𝑡  along the network. Therefore, when increasing the number of 

patches, the number of operations reduces since, while both U-Nets are the same, U-Net #2 operates with smaller patches 

(i.e., fewer convolutions are necessary, even if more patches are being used).  In all cases, our method requires fewer 

operations than the baseline. However, in practice, the overhead introduced by extracting the patches and merging them 

with the initial segmentation might result in times that are not as optimistic. 

 

6. CONCLUSION 

This work addresses the problem of semantic segmentation of high-resolution images, commonly dealt with in 

bioengineering and autonomous driving applications. We proposed a two-stage segmentation algorithm aiming to make 

the segmentation process aforementioned less costly: in stage 1, a low-resolution version of the original image is the 

input of a first U-Net; the output of this neural network – a low-resolution probability map – is then resized to the 

original resolution and divided into a relevant number of patches, being the less confident ones identified and refined by 

the second U-Net in stage 2. 

 
2 https://github.com/e-lab/pytorch-toolbox 

(a) Average Dice coefficient. (b) Number of floating-point operations per second. 

Figure 3.  Results (BL is the baseline model, S1 is only the U-Net #1 model). 



 

 
 

 

We validated the proposed strategy in 4 biomedical datasets and 2 datasets regarding autonomous driving. Our 

algorithm provided overall Dice coefficients similar to the baseline (with an average difference between BL and our 

method of -0.06), not showing noticeable gains. When calculating the number of FLOPS performed by the neural 

networks, it becomes clearer that the method is able to have a similar performance to the baseline while saving on at least 

50% and up to 80% of the number of operations. 

For future work, the choice of patches could be improved using a more fine-grained sliding window instead of a 

contiguous sliding window. One possibility would be to identify regions where the neural network is undecided and use 

these regions with the same scale – this could be especially beneficial for autonomous driving datasets since the same 

objects have different sizes (some cars are further away than others) and this would help homogenize the scale of these 

objects. 
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Figure 4.  BDD100K example. 
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Figure 5.  KITTI example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  SARTORIUS example. 
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