Preliminary Study on Deep Iterative Semantic Segmentation
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Abstract

Semantic segmentation consists of classifying each pixel according to a
set of classes. This process is particularly slow for high-resolution im-
ages, which are present in many applications ranging from biomedicine
to the automotive industry. In this work, we propose an algorithm targeted
to segment high-resolution images based on two stages. During stage 1,
a lower-resolution interpolation of the image is the input of a first neural
network, whose low-resolution output is resized to the original resolution.
Then, in stage 2, the probabilities resulting from stage 1 are divided into
contiguous patches, with the less confident ones being collected and re-
fined by a second neural network. The main novelty of this algorithm is
the aggregation of the low-resolution result from stage 1 with the high-
resolution patches from stage 2. We use the U-Net as the segmentation
model and evaluated our proposal in three databases. Our method shows
similar results to the baseline regarding the Dice coefficient, with fewer
floating-point operations per second.

1 Introduction

Segmenting images using neural networks can be time-consuming and
require a lot of memory, especially when working with high-resolution
images, common in the biomedical area due to high-resolution digital mi-
croscopes and in autonomous driving applications.

Neural networks for segmentation, such as the U-Net [6], produce
a probability, for each pixel, of belonging to the region of interest. A
common practice, when the image is high resolution, is to split the image
into patches and process each patch separately [8]. Such approach has
two problems: (1) it spends as much time in hard-to-segment regions as
it does in easy-to-segment regions where there is nothing of relevance;
(2) the boundary between patches is a problem and has to be dealt with in
a special way.

Therefore, the idea is to produce an iterative segmentation method
for neural networks, whose simplified overview is presented in Figure 1.
Iterative segmentation methods already exist [1, 2, 4, 9], but their focus is
on improving the quality of the segmentation, not the speed. Our proposal
is applicable to every type of high-resolution image, but it is tested over
two types of images (biomedical and autonomous driving).
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Figure 1: Simplified overview of the work.
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2 Related Work

Image segmentation is the process of clustering an image into regions of
interest (ROI) so that every pixel belonging to an ROI should be simi-
lar in terms of several characteristics (e.g. color, texture, shape or in-
tensity) [3, 7]. The development of novel artificial intelligence techniques
allows us to divide image segmentation methods into traditional and deep-
based approaches. Traditional segmentation techniques are iterative, of-
ten rely on domain knowledge and benefit from feature engineering tech-
niques to achieve their final results. Examples of these approaches are:
thresholding, edge-based, region-based, deformable models or graph cuts.

On the other hand, when it comes to neural networks, segmentation is
trained in an iterative manner and inferred in one step. A popular model
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Figure 2: Two-stage segmentation.

is the U-Net, which relies on the skip-layers that directly connect the fea-
ture maps of the encoder to the analogous feature maps of the decoder,
preventing the loss of information [6].

3 Proposal

The proposal consists of elaborating a new segmentation method based
on two stages: (1) using a U-Net to segment a low-resolution version of
the image; (2) based on the probabilities produced by this U-Net, identify
poorly segmented image patches and use a second U-Net to refine these
patches.

The proposed idea is illustrated in Figure 2, where an image is down-
sampled by a relevant factor and segmented by the first U-Net. The
resulting probability map is then upsampled to the original resolution
and divided into patches. The patches from areas where the activation
map is less confident are collected and each one is refined by the second
U-Net. Finally, the outcome of this algorithm is the aggregation of the
low-resolution result from stage 1 with the high-resolution patches from
stage 2.

4 Experiments

Data: The datasets used contain images from dermoscopy (PH2), fun-
dus imaging (RETINA) and autonomous driving (KITTI). Further details
regarding each dataset, such as the number of images (N), the average im-
age resolution (Avg Res) and the average percentage of foreground values
relative to the entire image (%Fg) are presented in Table 1.

Every dataset was randomly divided into 70% of the total images be-
ing training data and 30% being test data. To homogenize the resolution,
all the images from the same dataset were resized to a square image with
the length of hig,. — an even value, preferably a power of 2, close to
both image dimensions (width and length) of the average resolution of
the dataset. The hig,. value used for each dataset is also presented in
Table 1.

Model: The encoder path of both U-Nets architectures contained five 2D
convolutions, with kernels of size 3x3 and stride 2, followed by the acti-
vation function ReLU. The number of kernels started at 64 and doubled
at each layer. The decoder path consisted of five 2D transposed convo-
lutions with equal kernel size and stride from the contracting path, each
preceding a ReLU function. The number of kernels was reduced in half
for each layer of the expansive path. A 1x1 convolution operation was
applied in the final layer to obtain 1 as the output number of classes.



Table 1: Datasets for semantic segmentation.
Dataset N Avg Res higize %Fg Example

£
PH2* 200 575x766 768 314 .

RETINAY 66

745x782 768 7.3

KITTI# 200 375x1271 512 6.6

*https://www.fc.up.pt/addi/ph2%20database.html

F Composition of three datasets:
https://blogs.kingston.ac.uk/retinal/chasedbl
https://cecas.clemson.edu/~ahoover/stare
https://drive.grand-challenge.org

fhttps://www.cvlibs.net/datasets/kitti

Training: The following data augmentation transformations were ap-
plied: horizontal flip; contrast/brightness modification between -0.1 and
0.1; and random rotation, with limits -180° and 180°. This last transforma-
tion was only applied to the biomedical datasets, which are dermoscopic
and retinal images and therefore the model should be invariant to rotation.
Every aforementioned transformation had a probability value of 0.5.

The loss used consisted of an unweighted sum between two losses,
L(y,9) = Lf(y,9) + (1 =D(y,9)), where L is the focal loss [5] and the
other term corresponds to the inverse of the Dice coefficient. The focal
loss is a weighted version of cross-entropy that is helpful in such situa-
tions of imbalance (notice in Table 1 that the %Fg values are well below
50%). In fact, some of our tests showed it worked better than vanilla
cross-entropy. The focal loss parameters ¥ and o used were 2 and 0.25,
respectively, corresponding to the recommended values from the authors.
The inverse Dice coefficient is not as smooth as a loss function, but we
also minimized it since it is the metric that we used.

Adam was used as the optimizer with a batch size of 64, and a learning
rate of 0.0001, trained for 200 and 1000 epochs in the case of stage 1 and
stage 2, respectively. The model of stage 2 was trained for more epochs
since in each epoch only a small region of each image was selected.

5 Results

For each dataset, the average Dice coefficient and FLOPS were computed
to evaluate the model’s performance, where the baseline (BL) model rep-
resents the traditional approach consisting of the same U-Net architecture
using the original images as input.

Figure 3 shows the Dice results for the different experiments. As ex-
pected, there is usually a noticeable gain between stage 1 (S1) and stage 2
(S2). Increasing the number of patches N), either results in a plateau or
reduced performance.

Figure 4 depicts the FLOPS performed by the neural networks. When
increasing the number of patches, the number of operations reduces be-
cause, while stage 1 is the same, stage 2 operates with smaller patches
(that is, fewer convolutions are necessary, even if more patches are be-
ing used). In all cases, our method requires fewer operations than the
baseline. However, in practice, the overhead introduced by extracting the
patches and merging them with the initial segmentation might produce
results that are not as optimistic.
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Figure 3: Average Dice coefficient.

10°
[
o —5— PH2
—5— RETINA
200 |- .
—5— KITTI
l7e]
Ay
S
= 100 .
—a
ol m
| | | | | |
BL 2 4 8 16 SI
N,

Figure 4: Number of floating-point operations per second.

6 Conclusion

We validated the proposed strategy in 2 biomedical datasets and 1 dataset
regarding autonomous driving. Our algorithm provided overall Dice co-
efficients similar to the baseline, not showing noticeable gains. When
calculating the number of arithmetic operations performed by the neu-
ral networks, it becomes clearer that the method is able to have a similar
performance to the baseline while saving on the number of operations.
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