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Abstract

Despite their high performance, deep learning algorithms still work as
black boxes and are not capable of explaining their predictions in a human-
understandable manner, thus leading to a lack of transparency which may
jeopardise the acceptance of these technologies by the healthcare com-
munity. Therefore, the topic of explainable artificial intelligence (xAI)
appeared to address this issue. There are three main approaches to xAI:
pre-, in- and post-model methods. In medical images, important informa-
tion is generally spatially constricted. Hence, to ensure that models focus
on the important parts of the images and learn relevant features, several
attention mechanisms have been proposed and demonstrated increased
performances. This work proposes a comparative study of the application
of different attention mechanisms in deep neural networks and the evalu-
ation of their impact on the performance of the models and the quality of
the learned features.

1 Introduction

The democratised access to data and the increase of the availability of
computational power allowed deep learning (DL) methodologies to achieve
nearly-human performances in several areas of science, business and gov-
ernment. The popularity and success of DL in computer vision is mainly
due to the introduction of convolutional neural networks (CNNs), which
are designed to process unstructured data (e.g., images) [6]. In medical
image classification, the main task is to output a diagnosis (e.g., pres-
ence or absence of a disease) based on one or more input images. Given
the high predictive performance rates of CNNs in other computer vision
tasks (e.g., natural image recognition), the application of DL algorithms
in medical image classification occurred almost naturally.

2 Explainable Artificial Intelligence

Despite the high performances achieved by DL-based algorithms, their
transition into real-world applications is not trivial, due to their complex-
ity (i.e., high-number of parameters) and their black-box behaviour, which
may jeopardise their acceptance by the clinical community. Therefore,
the topic of explainable artificial intelligence (xAI) appeared intending to
contribute to a more transparent AI. Although there is no clear distinc-
tion between explainability and interpretability, one may think of these as
a three-stage process [3]: pre-model methods focus on understanding the
data distribution before building the model, through exploratory data anal-
ysis; in-model methods seek to integrate interpretability inside the model
(e.g., models based in rules, models based in cases, the use of regulari-
sation techniques during training to obtain sparser or monotonic models);
post-model methods are related to a posterior analysis of the model pre-
dictions (e.g., using the gradient information to identify the areas of the
image that mostly contribute to the final decision, inserting a perturbation
and observing the prediction, inverting the representations back to the in-
put pixel space or connecting the representations to semantic concepts).
In healthcare applications, it is fundamental to assess the quality of these
explanations, for the sake of transparency, ethics and fairness [8].

3 Attention Mechanisms

The intuition behind the application of attention mechanisms in DL al-
gorithms is inspired by the field of psychology, according to which hu-
mans tend to selectively concentrate on a part of the information. For
instance, the human visual system tends to selectively focus on specific
parts of an image while ignoring others. Following this rationale, it is
recognised that in AI systems, some parts of the inputs may be more rel-
evant than others (e.g., in automatic translation systems, only a subset of

words is relevant). The use of attention was initially proposed in [1] for
the task of neural machine translation. Recently, a CNN with a multi-level
dual-attention mechanism (MLDAM) has been proposed for macular op-
tical coherence tomography classification [7]. The main novelty of this
work in the context of medical image classification is the joint application
of a self-attention and a multi-level attention mechanisms that allow the
network to learn relevant features in coarser as well as finer sub-spaces.
Regarding the impact of the application of attention mechanisms in the in-
terpretability of the DL algorithms, we point to the work proposed by [2],
which approaches the field of interpretability through an analysis of the
saliency maps produced by the gradient-weighted class activation map-
ping (Grad-CAM) [9].

4 Data

We decided to perform experiments on two different use-cases using med-
ical images: breast cancer detection in mammography (CBIS-DDSM data
set) and pathology detection in chest X-ray (MIMIC-CXR data set). Each
data set contains images of two different classes (binary classification):
normal (i.e., without lesion or pathology) and abnormal (i.e., with lesion
or pathology).

5 Implementation

We performed a comparative study using three state-of-the-art pre-trained
deep learning models as backbones: VGG-16 [10], ResNet-50 [4] and
DenseNet-121 [5]. To assess the influence of the use of attention mecha-
nisms, we adapted the MLDAM architecture described in [7] for each of
the backbones. We performed experiments with four use-cases: baseline
(i.e., only the backbone is trained), baseline with data augmentation
(i.e., the backbone is trained with data augmentation strategies), baseline
and MLDAM (i.e., the backbone with MLDAM is trained), baseline and
MLDAM with data augmentation (i.e., the backbone with MLDAM is
trained with data augmentation strategies). All the images are resized to
the final size of 224×224 and a z-normalisation is applied to each RGB
channel. The data augmentation strategy employed in this work is com-
posed of several random rotations, random translations, random scaling,
and random horizontal flips. Each model is trained for a maximum of 300
epochs, with binary cross-entropy as the loss function and Adaptive Mo-
ment Estimation (Adam) with learning rate 1× 10−4 as the optimisation
algorithm. The batch size varied from 1 to 4, depending on the available
GPU memory. We save the best model’s parameters in both training and
validation sets according to the value of the loss. We tested all the trained
models (using the best weights in both training and validation sets) in the
test set of each database and computed the accuracy, precision, recall and
F1-score. We generated saliency maps [11] for the positive and negative
samples of the test set that were correctly predicted by all the use-cases
related to all backbones, to assure a fair intra- and inter-comparison. It is
important to note that these saliency maps were generated using the mod-
els loaded with the best weights in the validation set of each database.

6 Results and Discussion

An extended version of these results is publicly available in a GitHub
repository1. Table 1 and Table 2 present the accuracy results obtained
for the test set of the CBIS-DDSM and MIMIC-CXR, respectively. In
both cases, we can observe that the models’ predictive performance does
not suffer abrupt changes. Figure 1 and Figure 2 present examples of
saliency maps obtained for images with label “0” of the CBIS-DDSM

1https://github.com/TiagoFilipeSousaGoncalves/
attention-mechanisms-healthcare/blob/main/reports/Report.pdf
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Table 1: Accuracy results obtained for the test set of the CBIS-DDSM
data set: (a) - Baseline, (b) - Baseline with Data Augmentation, (c) -
Baseline and MLDAM, (d) - Baseline and MLDAM with Data Augmen-
tation.

Model Weights (a) (b) (c) (d)

DenseNet-121
Training 0.6650 0.6142 0.6210 0.5871
Validation 0.6108 0.5584 0.6396 0.6125

ResNet-50
Training 0.6514 0.6396 - 0.5973
Validation 0.5956 0.6176 0.5939 0.5854

VGG-16
Training 0.6650 0.6074 0.5939 0.5854
Validation 0.6244 0.6514 0.6210 0.6041

Table 2: Accuracy results obtained for the test set of the MIMIC-CXR
data set: (a) - Baseline, (b) - Baseline with Data Augmentation, (c) -
Baseline and MLDAM, (d) - Baseline and MLDAM with Data Augmen-
tation.

Model Weights (a) (b) (c) (d)

DenseNet-121
Training 0.8451 0.8312 0.8349 0.8386
Validation 0.8629 0.8498 0.8535 0.8666

ResNet-50
Training 0.8340 0.8424 0.8470 0.8386
Validation 0.8535 0.8694 0.8563 0.8414

VGG-16
Training 0.8507 0.8330 0.8293 0.8461
Validation 0.8629 0.8731 0.8535 0.8647

and MIMIC-CXR, respectively. Taking into account the reported effects
of the use of attention mechanisms in the quality of the features learned
during training, we were expecting the saliency maps to highlight clear
differences between the baseline (with or without data augmentation) and
the baseline with an attention mechanism (with or without data augmen-
tation). However, the saliency maps obtained suggest that the behaviour
of the models is either similar or completely disparate, without apparent
meaning. This lack of consistency makes it difficult to relate direct ben-
efits to the use of attention mechanisms on the properties of post-model
explanation methods.

7 Conclusions and Future Work

Our experiments did not present conclusive results on the impact of atten-
tion mechanisms in two healthcare use-cases, using three different state-
of-the-art backbones. Hence, further work should be devoted to: 1) the
development of new experiences with different data processing and aug-
mentation strategies, since it is not clear if these steps are harming the
performance of the models; 2) the design of different attention mecha-
nisms that capture features from different scales or levels, since, to the
authors’ knowledge, there is not a clear pipeline on which are the best
scales or levels that should be incorporated in an MLDAM module; 3)
generate saliency maps with other methods to see if the results that we
obtained are dependent of the post-model interpretability method or not;
4) experiment different state-of-the-art backbones to see if their behaviour
differs from the ones we used in this work; 5) try different data sets and

Figure 1: Examples of saliency maps obtained for an image with label “0”
of the CBIS-DDSM data set, using the DenseNet-121 backbone model:
(a) - Baseline, (b) - Baseline and MLDAM.

Figure 2: Examples of saliency maps obtained for an image with label “0”
of the MIMIC-CXR data set, using the DenseNet-121 backbone model:
(a) - Baseline, (b) - Baseline and MLDAM.

different tasks to assess if results are data or task-dependent.
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