
Deep Aesthetic Assessment of Breast
Cancer Surgery Outcomes
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Abstract. Breast cancer is a highly mutable and rapidly evolving dis-
ease, with a large worldwide incidence. Even though, it is estimated that
approximately 90% of the cases are treatable and curable if detected on
early staging and given the best treatment. Nowadays, with the exis-
tence of breast cancer routine screening habits, better clinical treatment
plans and proper management of the disease, it is possible to treat most
cancers with conservative approaches, also known as breast cancer con-
servative treatments (BCCT). With such a treatment methodology, it is
possible to focus on the aesthetic results of the surgery and the patient’s
Quality of Life, which may influence BCCT outcomes. In the past, this
assessment would be done through subjective methods, where a panel of
experts would be needed to perform the assessment; however, with the
development of computer vision techniques, objective methods, such as
BAT c© and BCCT.core, which perform the assessment based on asymme-
try measurements, have been used. On the other hand, they still require
information given by the user and none of them has been considered the
gold standard for this task. Recently, with the advent of deep learning
techniques, algorithms capable of improving the performance of tradi-
tional methods on the detection of breast fiducial points (required for
asymmetry measurements) have been proposed and showed promising
results. There is still, however, a large margin for investigation on how
to integrate such algorithms in a complete application, capable of per-
forming an end-to-end classification of the BCCT outcomes. Taking this
into account, this thesis shows a comparative study between deep con-
volutional networks for image segmentation and two different quality-
driven keypoint detection architectures for the detection of the breast
contour. One that uses a deep learning model that has learned to predict
the quality (given by the mean squared error) of an array of keypoints,
and, based on this quality, applies the backpropagation algorithm, with
gradient descent, to improve them; another which uses a deep learning
model which was trained with the quality as a regularization method
and that used iterative refinement, in each training step, to improve the
quality of the keypoints that were fed into the network. Although none of
the methods surpasses the current state of the art, they present promis-
ing results for the creation of alternative methodologies to address other
regression problems in which the learning of the quality metric may be
easier. Following the current trend in the field of web development and
with the objective of transferring BCCT.core to an online format, a pro-
totype of a web application for the automatic keypoint detection was
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developed and is presented in this document. Currently, the user may
upload an image and automatically detect and/or manipulate its key-
points. This prototype is completely scalable and can be upgraded with
new functionalities according to the user’s needs.

1 Introduction

1.1 Context

Breast cancer is considered a systemic disease from diagnosis, so, it is extremely
important to determine cancer staging (how widespread cancer is at the time
of diagnosis), a factor which will influence the treatment decision from that
moment [1,2]. Surgery is usually the primary approach in terms of treatment
and its main objectives are to remove cancer and to determine the stage. It is
possible to specify surgery in the following types:

• Partial (segmental) mastectomy or lumpectomy: which is based on
the removal of the cancerous tissue with a rim of healthy tissue (free margin).
This approach is also known as Breast Cancer Conservative Surgery (BCS)
or Breast Cancer Conservative Treatment (BCCT) [1–3].

• Simple or total mastectomy: which includes the removal of the entire
breast, but not of the lymph nodes under the arm or muscle tissue from
beneath the breast [1,2,4].

• Modified radical mastectomy: based on the removal of the entire breast
without the chest muscle and removal of the first two stages of lymph nodes
under the arm [1,2].

• Radical mastectomy: which consists of the extensive removal of the entire
breast, lymph nodes, and chest wall muscles under the breast [1,2,5].

Patients usually undergo radiation or systemic therapies in order to increase the
effectiveness of the treatments. It is important to take into account that the
duration of the therapy and the type of radiation that will be used will always
depend on the type of performed surgery [6].

1.2 Motivation

Despite being a highly mutable and rapidly evolving disease, it is estimated that
most breast cancers (approximately 90% of the cases) are treatable and curable
if detected on early staging and given the best treatment [7]. Nowadays, with
implemented breast cancer routine screening habits [8,9], it is possible to do
proper management of the disease, in case it appears, and to develop a better
clinical plan to treat it. This means that most breast cancers can now be treated
using conservative approaches, i.e., BCCT, contributing, thus, for local control
of the disease, with similar survival rates to those obtained with mastectomy,
although, with better cosmetic results [4,7,10]. Moreover, the definition of an
objective evaluation standard for the cosmetic outcome of BCCT has become
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crucial, due to the fact that with the development of new oncoplastic tech-
niques it becomes necessary to have an objective method to compare cosmetic
results [7,11]. There is a need for an automatic method that is able to perform
this assessment by simply receiving data (i.e., images) as input. To accomplish
this, one must develop an algorithm that is able to automatically detect breast
fiducial points (i.e., keypoints), which are needed to compute asymmetry mea-
surements and to perform the assessment.

2 Literature Review

2.1 BCCT Assessment

Although BCCT has an identical meaning worldwide, it is not a standardized
procedure [12], due to the fact that there are some technical variations related
both to surgery and radiotherapy. Generally, the aesthetic result of BCCT is
done by an observer who identifies and evaluates colour, shape, geometry, irreg-
ularity and roughness of the treated breast in comparison with the untreated
breast. This relies on the assumption that better results correspond to more
similar breasts; this is considered to be a much more practical approach and a
method that fits the evolution and the appearance of new emerging oncoplas-
tic techniques, where, usually, both breasts are submitted to surgery, leading,
consequently, to a more demanding comparison [7,13]. Historically, it was Jay
Harris, in 1979, the one who had introduced a subjective overall cosmetic score,
that would become a standard in conservation breast procedures: the Harvard
scale [14]. This scale classifies the overall cosmetic result in four classes:

(1) Excellent: if the treated breast is nearly identical to the untreated one.
(2) Good: if the treated breast has some differences when compared with the

untreated one.
(3) Fair: if the treated breast is clearly different from the untreated one, but

not seriously distorted.
(4) Poor: if the treated breast is seriously distorted.

2.2 Computer-Aided Aesthetic Classification of BCCT Outcomes

Later, software-based methods came up with the main idea of predicting the
global aesthetic result since they are based on different individual characteris-
tics which are automatically and objectively extracted from patient photographs.
These approaches explore the ability that computational methods have to pro-
vide an effective, easy, fast, reliable and reproducible tool to evaluate the con-
sequences of breast cancer patient care [7]. Regarding this topic one must talk
about Breast Analysing Tool - BAT c© from Fitzal et al. [15] and BCCT.core from
Cardoso and Cardoso [16]. On behalf of BAT c©, Fitzal et al. proposed the Breast
Symmetry Index (BSI) to evaluate the cosmetic outcome of BCCT. With BAT c©,
they were able to measure differences between left and right breast sizes from
a patient’s digital picture. The sum of all differences will output the BSI score,
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which has the capability of measuring size differences in between breasts. Con-
cerning BCCT.core, it is important to state that it is a computer-aided medical
system that detects breast keypoints and performs automatic feature extraction
from patient photographs, in order to capture some of the relevant factors for the
overall cosmetic result. To do a proper classification, it is necessary to obtain a
concise representation of a BCCT image, based on asymmetry, colour differences
and scar visibility features. To describe breast asymmetry, several features are
taken into consideration [16] and, in order to extract them, it is necessary to
mark some specific keypoints in the image, using BCCT.core software: sternal
notch, the scale mark, the nipples and left and right breasts contours, adjusted
with an active contour based on splines with control points.

2.3 A Deep Learning Approach to Keypoint Detection

Recently, Silva et al. have proposed the use of a deep neural network (DNN)
for the keypoints detection task. With deep learning, it is possible to follow
an integrated learning approach that uses the context information [17]. Actu-
ally, regarding keypoint detection with deep learning, there are two relevant
works that presented interesting ideas: Cao al. [18], which brought the idea of
learning part confidence maps and part confidence fields as a mean to detect
keypoints in the end; Belagiannis et al. [19] which also proposed an architecture
that first learns how to regress heatmaps (i.e., each keypoint is modelled with
a Gaussian distribution) and, after iterative tuning on the training of heatmap
regression, it is able to predict keypoint localizations. Taking these ideas into
account, Silva et al. have proposed the generation of an intermediate represen-
tation (i.e., heatmaps), which consists on a fuzzy localization for the keypoints
that are intended to be detected. The heatmaps are obtained using the segmen-
tation model, U-Net [20]. For the keypoint regression, the strategy starts with
the multiplication of the image with the refined output of the previous mod-
ule, as a way of improving the fuzzy localization of keypoints, which will then
enhance the exact keypoint detection. Therefore, a regression module predicts
the keypoints’ coordinates.

3 Image Segmentation for Breast Contour Detection

3.1 Background

Typically, in biomedical applications, the employment of a proper segmenta-
tion method is of utmost importance, being one of the most relevant steps
in the pipeline [21,22]. With the advent of novel artificial intelligence tech-
niques, it is possible to divide image segmentation into traditional approaches,
such as thresholding [23,24], edge based [25,26], region based [27–30],
deformable models [30–32] or graph cuts [33,34], or deep learning approaches
which make use of the capabilities of DNNs to succeed in these tasks. Regarding
the scope of this thesis, it is relevant to mention four architectures:
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• Fully Convolutional Network (FCN): developed by Long et al. and trained
end-to-end and/or pixel-to-pixel on semantic segmentation [35]. All of the
following architectures are based on this one.

• U-Net: proposed by Ronneberger et al. and applied in biomedical image
segmentation [20].

• Global Convolution Network (GCN): proposed by Peng et al. and applied
in localization and classification tasks in image semantic segmentation [36].

• DeepLabv3+: published by Chen et al. in 2018, is, in fact, an extension of
DeepLabv3 [37], with the addition of an encoder-decoder module to refine
segmentation results. This work is based on the use of atrous convolution, or
dilated convolution, and is the state of the art for image segmentation [38].

3.2 Segmentation for Breast Contour Detection

The main hypothesis behind this approach is that it should be easier to detect
breast contours if one is able to properly detect the breast first. This is a challenge
of semantic segmentation, where one needs to properly separate both breasts
(i.e., foreground) from the other image components (i.e., background). In this
case, the segmentation task would work as means to an end; ideally, within
this approach, the pipeline would be composed of two main processes: breast
segmentation and breast contour detection, where the second is fully-dependent
on the first. In this experience, the main goal was to study the capabilities of state
of the art segmentation DNNs on the specific task of segmenting both breasts
from the images of the dataset. It is important to take into account that one
can only move to the subtask of breast contour detection if good performance is
achieved in the segmentation task.

3.3 Implementation and Results

For this study, it was decided to use state of the art architectures, such as: U-Net,
GCN and DeepLabv3+. The dataset (221 images) was divided into train (107
images), validation (47 images) and test (67 images) sets. All images were first
resized to the dimensions of 512×384. It was used the Dice Coefficient [39] (DC)
as performance metric, which is very common in image segmentation tasks; DC
values near 1 mean that there is high similarity between both ground-truth and
predicted masks. It can be written as

DC =
2
∑N

i pigi
∑N

i p2i +
∑N

i g2i
(1)

where N represents the total number of pixels, pi is the predicted pixel label, gi
is the ground-truth pixel label and i ∈ {0, 1}, meaning that this is a binary-class
problem. Regarding loss function, the Dice Coefficient Loss (DCL) was chosen
and monitored during training. It can be written as

DCL = 1 − DC (2)
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where DC is the Dice Coefficient. U-Net was implemented in Keras [40] and
GCN was implemented in PyTorch [41]. Both were trained during 300 epochs,
with Adadelta [42] as optimization function. During training phase, data aug-
mentation techniques such as rotation, horizontal and vertical shifting, shear
mapping, zoom in and zoom out or horizontal and vertical flips were employed.
The model with the lower loss value on the validation set was chosen during
training and saved. It was then used to perform inference and evaluation on the
test set. Results on test set are shown in Table 1; each DC value on the table
is actually the average DC value obtained with each model in test set. Due to
the lack of computational resources it was not possible to train the TensorFlow
implementation of DeepLabv3+.

Table 1. Average Dice Coefficient results on test set for U-Net and GCN models. Best
result is highlighted in bold.

Average Dice Coefficient

U-Net 0.8689

GCN 0.8937

3.4 Discussion and Conclusions

Although it was possible to obtain DC results near 1, for this specific task, they
do not contribute as much as it was initially expected. Here, the main goal was
to generate breast binary masks from a given image in order to detect breast
contours, being a two-class segmentation problem, where breasts are foreground
and the rest of the image is the background. Taking this into account, it is pos-
sible to explain high results on the DC score: masks are mostly composed by
background pixels (imbalanced-class problem), so it is easier for the network to
predict background instead of foreground due to the fact that it has naturally
seen more background pixels, during training. On the other hand, it can be said
that, during inference, the trained models are able to predict the most probable
breast localization. The main issue is that this is still a fuzzy localization, which
means that it will not help in finding breast contours. Also, when images con-
tain small or undefined breasts, it becomes even harder to obtain reliable breast
image masks, which would lead to increased difficulty in finding breast contours.
For these reasons, post-processing experiences to detect contours after segmen-
tation were not performed. On the other hand, since breast contour detection
fully depends on excellent results on image segmentation, this approach, at the
moment, is not a viable option.
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4 Quality-Driven Keypoint Detection

4.1 State of the Art on Deep Quality-Driven Architectures

Generally, deep learning architectures for image analysis take an image as input
and return a mask (image segmentation) or a value (image classification) as
output; these deep models are then regularized in a supervised manner on the
object of interest. On the other hand, the need for great amounts of training
data or the necessity of re-training/fine-tuning such models in order to apply
them in different contexts may be problematic [43]. To overcome these issues,
two recent works from Fernandes et al. and from Rebelo et al. are presented and
explained.

Deep Image Segmentation by Quality Inference. In their original work,
Fernandes et al. started by defining the quality metric for the learning phase;
they ended up choosing DC, which is widely used in this type of tasks as a sim-
ilarity metric. Considering that modelling of utility functions is usually inspired
in pairwise preferences [44] and/or cardinal/ordinal functions [45], the authors
proposed a model that is capable of learning the quality (i.e., DC), given an
image and mask pair; in this case, the utility function is precisely this mea-
sure of correspondence between a mask and an image. To achieve such a model,
the authors proposed a deep architecture, Gossip Network, which receives an
image and mask pair as input and has two streams that try to model the fore-
ground and background, respectively by the input mask. Moreover, as a strategy
to increase/decrease the network’s confidence in the recognition of their corre-
sponding regions, these streams communicate (i.e., to gossip) between each other.
After training, the Gossip Network is used to predict the quality of a given image
and mask pair and, based on this prediction, the mask is iteratively refined by
backpropagation until it reaches a stop criteria (e.g., quality value, number of
iterations).

Quality-Based Regularization for Iterative Deep Image Segmentation.
Rebelo et al. have presented a new methodology, which uses the notion of quality
as a regularization method during the training of a network for direct segmenta-
tion refinement [46]. They proposed a network with an encoder-decoder structure
which takes an image and a mask as inputs, and returns quality and a refined
segmentation as output, following a multi-task learning paradigm. Although this
work follows a similar strategy to the one presented by Fernandes et al. [43] (e.g.,
the quality metric is the same), the main focus in this case was the study of a
DNN which could receive the predicted mask from a state of the art network
and iteratively improve the segmentation, while predicting the quality of the
input segmentation, at the same time; this parallel quality prediction can be
understood as a regularization method that will favour the learning of features
connected to the degree of correction necessary to improve the input segmenta-
tions. To start the training, it is required to feed the network with an image and
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an initial segmentation mask (obtained from any other model); this initial mask
will be refined according to an iterative method, where the network will use its
own output as a new input for further improvement, leading, thus, to higher
predicted quality values. In their original work, Rebelo et al. use U-Net [20],
trained on the same dataset, to obtain the initial segmentation masks, which are
then concatenated to the input image as an additional channel.

4.2 Deep Keypoint Detection by Quality Inference

The main idea behind this first approach is the application of the main concepts
from [43] to keypoint detection, instead of image segmentation. To achieve such
a model, one must first define a suitable quality metric. Following the work
developed in [17], mean squared error (MSE) was chosen as the quality metric.
It is written as:

MSE =
1
n

n−1∑

i=0

(ki − k̂i)2 (3)

where n is the number of samples (i.e., number of coordinates in each keypoints
array), i is the index of the value, k̂ is the predicted keypoints array and k is the
ground-truth keypoints array. The main objective is to have a model that receives
an image and an array with initial keypoints candidates as inputs and that
outputs a quality value (i.e., MSE between the candidate keypoints array and the
ground-truth keypoints array). The image is given as an input to a CNN, a latent
representation is obtained and then concatenated with the candidate keypoints
array. This concatenation is then fed to a Multilayer Perceptron (MLP) which
will output the quality value predicted, related to the image and the candidate
keypoints. The CNN Module is composed by VGG16 [47] as backbone without
its dense layers, followed by four convolutional layers and three dense layers;
the latent representation of the image is obtained from the last dense layer.
This latent representation is then concatenated with the candidate keypoints
array which is then fed to a MLP; this MLP has three dense layers. The quality
value is obtained from the last dense layer. After training the model on the
quality inference task, the next step would be the use of the backpropagation
algorithm to improve the predicted quality, leading, thus, to coordinate values
near ground-truth. In order to do this, one must first to compute the gradients
of the predicted quality, q̂, with respect to the given candidate keypoints, k′,
and use gradient descent (important to remind that the quality metric is given
by an error metric, so, what is aimed is the minimization of this value) with a
learning rate, α, as follows:

k′ ← k′ − α
∂q̂

∂k′ (4)

After several steps, it would be expected that the real MSE between the changed
candidate keypoints and the ground-truth keypoints would be lower than the real
MSE between the initial candidate keypoints and the ground-truth keypoints.
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4.3 Deep Iterative Refinement of Keypoint Detection

This second approach aims to apply the methodology proposed in [46] to the task
of keypoint detection, through the iterative refinement of the given candidate
keypoints. Similarly to the work developed by Rebelo et al., the main objective
here is to use an iterative approach to improve the quality (in this case, minimize
its value, since it is a MSE value) of the given candidate keypoints; the quality
value acts here as a form of regularization, during training. When compared to
the architecture presented in Subsection 4.2, this one has some modifications.
The CNN Module keeps the same structure, however, three new MLPs are added
to the model in order to fulfill the main objective. The Intermediate MLP receives
as input the result of the concatenation between the candidate keypoints and
the Image Embedding and generates what is called an Intermediate Embedding,
which has lower dimensions than the first one. This latent representation is then
given to the Keypoints MLP, which has the task of predicting the keypoints
coordinates, and to the Quality MLP, which has to learn how to predict the
quality value, related to the image and candidate keypoints pair.

4.4 Implementation and Results

Deep Keypoint Detection by Quality Inference. This model was imple-
mented in Keras [40]. All images were first resized to the dimensions of 512×384;
keypoints were also resized accordingly and were normalized by the width of the
image, in order to be between 0 and 1. The dataset was divided into train, valida-
tion and test sets, as previously explained. To ensure that the model was robust,
data augmentation techniques were employed during training, in an online fash-
ion, to both images and ground-truth keypoints: translations, rotations and flips
were used. Since the main objective is to teach the model on quality inference,
it is important to ensure that a large range of quality values is shown to the
network, during training; in order to achieve that, one must be certain that to
the initial candidate keypoints were applied the correct diversity of transforma-
tions, so that, the correspondent qualities cover a wide range of values. To do
this, the data augmentation strategy presented by Fernandes et al. in [43] was
adapted and used; in this case, the transformations that were applied to the key-
points were translations, rotations and horizontal flips. Once again, all candidate
keypoints and their correspondent qualities are generated in an online setting
to keep dynamic training. Regarding the training phase, the loss function was
defined as follows:

Lmodel = λ1Limageembedding + λ2Lquality (5)

where λ1 and λ2 represent non-negative weights attributed to each loss. The
loss of the image embedding is computed as the MSE between predicted image
embedding and the ground-truth keypoints. The intuition behind this supervised
approach is to guide the CNN Module to learn a latent representation that is
near the ground-truth keypoints in order to facilitate the learning of the quality
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by the MLP. Regarding quality prediction, the loss function is also computed
as the MSE between the predicted quality value and the ground-truth quality
for the candidate keypoints. The model was trained during 300 epochs, with
Adadelta [42] as optimization function, and the model with lower loss on the
validation set was saved. After training, several initial candidate keypoints for
test set were generated, following three possible situations: candidate keypoints
were the result of the prediction obtained with the model described in [17] in
images of the test set; candidate keypoints were the result of random generated
values; candidate keypoints were coordinates with value 0. The quality was then
inferred from the initial candidate keypoints, using the trained model, and then
the backpropagation algorithm proposed was applied. Regarding backpropaga-
tion, the presented results use a learning rate α = 0.001, selected taking into
account the order of magnitude of the errors. The number of backpropagation
iterations was 1000 and 5000. Regarding initial candidate keypoints and adapted
candidate keypoints, the average MSE, its standard deviation and the maximum
and minimum errors were obtained. Tables 2, 3 and 4 show results for the three
possible initial candidate keypoints status: candidate keypoints were the result
of the prediction obtained with the model described in [17] in images of the test
set; candidate keypoints were the result of random generated values; candidate
keypoints were coordinates with value 0. Note: In the following Tables, GT
stands for ground-truth keypoints, IC for initial candidate keypoints, AC for
adapted candidate keypoints and STD for standard deviation.

Table 2. Results for the backpropagation applied to the candidate keypoints which
were the result of the prediction obtained with the model described in [17] in images
of the test set. Best results are highlighted in bold.

Real MSE Mean STD Max Min Steps

GT & IC 0.00116 0.00150 0.00659 0.00013 -

GT & AC 0.00118 0.00151 0.00651 0.00014 1000

GT & AC 0.00139 0.00158 0.00656 0.00017 5000

Table 3. Results for the backpropagation applied to the candidate keypoints which
were the result of random generated values. Best results are highlighted in bold.

Real MSE Mean STD Max Min Steps

GT & IC 0.11286 0.01700 0.15130 0.07088 -

GT & AC 0.11087 0.01639 0.14704 0.07051 1000

GT & AC 0.10519 0.01492 0.14063 0.06954 5000
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Table 4. Results for the backpropagation applied to the candidate keypoints which
were coordinates with value 0. Best results are highlighted in bold.

Real MSE Mean STD Max Min Steps

GT & IC 0.27012 0.03186 0.34395 0.21046 -

GT & AC 0.25837 0.03128 0.33107 0.20054 1000

GT & AC 0.21929 0.02865 0.28671 0.16724 5000

Deep Iterative Refinement of Keypoint Detection. This model was imple-
mented in PyTorch [41]. The data preparation process was the same as previously
explained. Regarding training phase, the model was trained during 300 epochs,
with Adadelta [42] as optimization function, and the model with lower loss on
the validation set was saved. For this approach, a different strategy for the loss
function was designed:

Lmodel = λ1Lquality + λ2Lrefinedkeypoints (6)

where λ1 and λ2 represent non-negative weights attributed to each loss. The
loss of the quality (regularization term) is computed the same way as pre-
sented above. The loss of the refined keypoints (main goal) is calculated as the
MSE between the predicted refined keypoints and the ground-truth keypoints.
Tables 5, 6 and 7 show results for the three possible initial candidate keypoints
status: candidate keypoints were the result of the prediction obtained with the
model described in [17] in images of the test set; candidate keypoints were the
result of random generated values; candidate keypoints were coordinates with
value 0.

Table 5. Results for the iterative refinement model applied to the candidate keypoints
which were the result of the prediction obtained with the model described in [17] in
images of the test set.

Real MSE Mean STD Max Min

GT & IC 0.00116 0.00150 0.00659 0.00013

GT & AC 0.00218 0.00164 0.00750 0.00028

Table 6. Results for the iterative refinement model applied to the candidate keypoints
which were the result of random generated values.

Real MSE Mean STD Max Min

GT & IC 0.11286 0.01700 0.15130 0.07088

GT & AC 0.00233 0.00150 0.00633 0.00033
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Table 7. Results for the iterative refinement model applied to the candidate keypoints
which were coordinates with value 0.

Real MSE Mean STD Max Min

GT & IC 0.27012 0.03186 0.34395 0.21046

GT & AC 0.00345 0.00294 0.01293 0.00045

4.5 Discussion and Conclusions

Both proposed models were functional, however, they were not able to improve
the state of the art results, i.e., the ones published by Silva et al. in [17]. Regard-
ing the first approach, explained in Subsection 4.1, there are some considerations
that have to be taken into account: inference of quality has always an associated
error amplitude, which means, that the inference will always have some devia-
tions from the real quality value; this will have implications when performing
backpropagation in the candidate keypoints, due to the fact, that, in each step,
the inferred quality value will always diminish, but that does not necessarily
mean that the real quality value has diminished. Also, although results are pre-
sented for different values of backpropagation steps, an optimal value still needs
to be found; this is crucial, since, following the main conclusions from Fernan-
des et al. in [43], too much backpropagation steps may lead to a deterioration of
the adapted candidate keypoints. On behalf of the second approach, the refined
keypoints predictions have better performances, but still need further improve-
ments, regarding the fact that they did not improve the results obtained with
the model proposed by Silva et al. in [17]. It is important to notice that, even
with data augmentation, the dataset used to train the models may not be large
enough to address these specific tasks; the applied data augmentation parame-
ters may also not be enough, and, it is possible that the models need an even
higher variety of examples to properly learn. It is also important to mention
that this was the first work which used a quality-driven approach for a regres-
sion task; this means that there is space for improvements. Also, it is still not
clear that this approach will lead to success, considering this kind of tasks. For
all these reasons, these models still need further research and development in
order to be considered viable options to solve this thesis’ main problem.

5 A Web Application for Automatic Keypoint Detection

5.1 Motivation

Currently, in order to use BCCT.core [16], users must download, install and
set-up the software on their computers; these three steps may be considered a
burden for some of the users and they also imply that the software will use their
computational resources to properly function. On the other hand, fundamental
services such as software maintenance (updates and/or upgrades) or support
could be difficult in an offline setting. To overcome these issues, and taking into



Deep Aesthetic Assessment of Breast Cancer Surgery Outcomes 1979

account that most of the healthcare institutions have an Internet connection [48],
it was decided that the best option would be to move BCCT.core into a web-
based application. This way, users would only need to deal with a simple website
registration in order to use all the functionalities of the software; the rest would
be handled in the background, on the server where the application is hosted.
Moreover, the field of web development is in a trending evolution, being able
to keep up with most of the market’s new requirements [49]. Use-cases and the
proposed architecture for such an application are further described.

5.2 Use-Cases and Proposed Architecture

The starting point for the establishment of use-cases for this web-based applica-
tion for automatic keypoint detection was BCCT.core [16]; the main function-
alities will not require major improvements, however, the transition from offline
to online setup has a big impact on the new practicalities of the application, and
this should be taken into account on the redesign of the software. The identified
use-cases, from the user side, were:

(1) The user should log in to enter the application: with the application in
an online setting, it is crucial that measures that take into account the
privacy of the clinical data are implemented, and, as such, it is believed
that a login system for user authentication inside the application is of utmost
importance.

(2) The user may upload medical photos: to perform the keypoint detection,
the application should have an intuitive interface so users can upload the
photos that are going to be subjected to evaluation.

(3) The user may consult and change the detection records: it is important that
the user has access to the evaluated photos and to the predicted keypoints
and he/she should be able to manually correct the model’s predictions.

(4) The user may erase all the records from the system: once again, since one is
dealing with sensitive clinical data, it is important that the users have the
possibility to reset their records.

From the server side, the system should have a database. This database will
contain:

(1) User’s information: name, e-mail and password.
(2) Uploaded Photo’s information: location, predicted keypoints and the asso-

ciated user.

Regarding the type of relationship, it can be seen that it is a one-to-many rela-
tionship, i.e., an user can upload many photos. Another fundamental require-
ment is a back-end capable of interacting with deep learning models created in
Python; the server should have enough space to host such models.
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5.3 Implementation and Prototype

The web application prototype was developed with Django, a free and open
source high-level Python web framework that promotes fast development, secu-
rity and scalability. The main reason behind this choice is indeed related with the
fact that the deep learning models are written in Python, and since Django is also
powered by the same programming language, this application-models interaction
would be simpler. Moreover, Django permits the creation and manipulation of
databases through Python, simplifying, once again, all the development that
requires interaction between the front-end and the back-end. With everything
on the back-end being handled by Django, one has to deal with the front-end.
The front-end of an application is directly related to its usability and user expe-
rience. In terms of development, it was used HTML and CSS, which are the
standard code languages for web development. One of the main objectives is to
have an interface that allows users to perform their tasks (i.e., keypoint detection
and/or aesthetic assessment) as simple as possible; to do that, it was decided
to incorporate all the functionalities as buttons, where the user clicks and sees
the results, without the need to check what is happening in the background.
An administration interface was also developed, since, in reality, such a system
requires a professional who can properly manage, update and maintain it, while
giving some kind of support to the users.

5.4 Discussion and Conclusions

It was possible to achieve a fully working prototype, capable of fulfilling all the
previously stated use-cases and representing, thus, a reliable proof of concept
that can act as a starting point for the final deployment of a final version of
the web application for automatic keypoint detection. Regarding the fact that
the system is in development mode, one of the next steps would be, for exam-
ple, changing the database framework (currently the system uses SQLite) to a
scalable one (for example, PostgreSQL), which is supported by Django; impor-
tant to remind, that the method of interacting with the database stays almost
untouched. Once again, Django handles all the background work.

6 Future Work

Regarding future work recommendations, it is proposed to:

• Use DeepLabV3+ [38] for breast image segmentation;
• Explore recurrent neural networks [50] (RNN) or graph neural networks [51]

(GNN) for keypoint prediction;
• Test different metrics for quality evaluation;
• Acquire more data to improve training performance;
• Deploy the Web application for healthcare professionals.
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