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ABSTRACT The increasing popularity of attention mechanisms in deep learning algorithms for computer
vision and natural language processingmade thesemodels attractive to other research domains. In healthcare,
there is a strong need for tools that may improve the routines of the clinicians and the patients. Naturally, the
use of attention-based algorithms for medical applications occurred smoothly. However, being healthcare a
domain that depends on high-stake decisions, the scientific community must ponder if these high-performing
algorithms fit the needs of medical applications. With this motto, this paper extensively reviews the
use of attention mechanisms in machine learning methods (including Transformers) for several medical
applications based on the types of tasks that may integrate several works pipelines of the medical domain.
This work distinguishes itself from its predecessors by proposing a critical analysis of the claims and
potentialities of attention mechanisms presented in the literature through an experimental case study on
medical image classification with three different use cases. These experiments focus on the integrating
process of attention mechanisms into established deep learning architectures, the analysis of their predictive
power, and a visual assessment of their saliency maps generated by post-hoc explanation methods. This
paper concludes with a critical analysis of the claims and potentialities presented in the literature about
attention mechanisms and proposes future research lines in medical applications that may benefit from these
frameworks.
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INDEX TERMS Artificial intelligence, attention mechanisms, computer vision, deep learning, medical
applications, medical image analysis, transformers.

I. INTRODUCTION19

The concept of attention is not new and has been part of20

multidisciplinary debates across psychology, physiology, and21

neuroscience [1]. The inspiration behind the translation of22

this concept into artificial intelligence (AI) algorithms comes23

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wang .

from biological vision systems, which appear to employ 24

a serial computational strategy when inspecting complex 25

scenes [2]. Historically, the pursuit of an attention mechanism 26

seems to be deeply related to the problem of visual search, 27

where the main objective may be to find a small object in 28

a disorderly environment (e.g., a pen on a desk). A possible 29

solution to this problem is to use images with high resolution 30

and wide field-of-view. However, this results in very high 31
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dimensional inputs [3]. Hence, it was essential to devise a32

strategy capable of selecting the most important parts of33

the input, deciding where to look next during the process-34

ing pipeline, and managing limited computational resources.35

These aspects motivated the study of selective visual atten-36

tion, which deals with the computational complexity of37

computer vision tasks and often requires several basic compo-38

nents, such as the selection of a region of interest in the image39

and the selection of the dimension of features and values40

of interest [4]. Besides, theoretically, such mechanisms have41

the potential to guide the research into focusing more on42

sparse local models [5]. Nevertheless, the scientific commu-43

nity proposed several research lines that certainly influenced44

the modern methodologies of attention-based mechanisms45

for deep learning. Bandera et al. [6] and Minut et al. [3] pro-46

posed reinforcement learning policies to regularize the train-47

ing of computer vision systems in the task of target recog-48

nition, Koch and Ullman [1] and Tsotsos et al. [4] proposed49

a set of rules that promote visual attention via selective50

tuning and shifts in the processing focus [1] during the51

analysis of a visual scene, and Itti and Koch [2] addressed52

this challenge using a saliency map based search mechanism.53

Recently, the increase of available computational power and54

the democratized access to big data allowed the resurgence of55

deep learning algorithms and their applications [7], [8]. With56

this paradigm shift, current methods now seek to integrate57

learnable attention mechanisms on an end-to-end basis [9],58

with interesting impacts in diverse applications [10].59

As the available literature on attention mechanisms con-60

tinues to grow, the first reviews and surveys on the topic61

were published and gained visibility. Hence, it is relevant62

to introduce the reader to the context of such studies and63

their content. Besides, this overview helps the reader gain64

intuition about the work developed in this research field while65

understanding the research questions that this survey aims66

to answer. Borji and Itti [11] reviewed several models of67

visual attention based on non-deep learning methods and68

presented a taxonomy indicating their approaches an capa-69

bilities. Cho et al. [12] presented an early study on the use70

of attention mechanisms in convolutional neural networks71

(CNNs) and recurrent neural networks (RNNs) with a spe-72

cial focus on soft-attention for applications such as neu-73

ral machine translation, image captioning, video description74

generation or end-to-end neural speech recognition. Wang75

and Tax [13] published a survey that explored the use of76

attention mechanisms in RNNs for sequence-to-sequence77

challenges. Chaudhari et al. [14] presented a survey of atten-78

tion mechanisms for natural language processing, wherein79

they proposed a taxonomy and reviewed several neural net-80

work architectures in which attention has been incorporated81

while discussing applications in which modeling attention82

has shown significant impact. Yang [15] performed a brief83

overview about attention mechanisms for computer vision84

and introduced a preliminary taxonomy. Lindsay [16] pub-85

lished a review on attention mechanisms that provides intu-86

ition about the definition of attention in the neuroscience and87

psychology literature and covers several use cases of attention 88

in machine learning, indicating their biological counterparts 89

where they exist. 90

In 2017, Vaswani et al. [17] proposed the Transformer, 91

a deep neural network architecture composed solely of 92

attention operations that discarded recurrence and convo- 93

lutions entirely. In the original paper, the authors applied 94

this architecture to the task of neural machine translation 95

and explored the use of attention operations as a means 96

of reducing computational complexity when compared to 97

recurrent or convolution operations. The establishment of 98

a similar architecture for computer vision occurred almost 99

naturally, when Dosovitskiy et al. [18] proposed the Vision 100

Transformer architecture. Han et al. was one of the pioneers 101

in analyzing the advantages and disadvantages associated 102

with the use of Transformer-based architectures in computer 103

vision with a particular interest in the self-attention mecha- 104

nism [19]. Khan et al. [20] also provided a comprehensive 105

overview of Transformer-based models from the perspective 106

of their application and architectural design. Guo et al. [21] 107

published a comprehensive and systematic review of attention 108

mechanisms for computer vision and created a taxonomy 109

that categorizes attention mechanisms according to their data 110

domain. Xu et al. [22] revisited the Transformer architec- 111

tures with particular emphasis on low-level vision and gen- 112

eration. Recently, Shamshad et al. [23] explored the use of 113

Transformer-based architectures for medical image analysis 114

and published a pioneering review that provides insight on 115

the applications of these algorithms in several dimensions 116

of the clinical daily routine. Almost all of the previous 117

papers focus on the current state-of-the-art, performing a 118

comparative analysis based solely on published results, thus, 119

anticipating future and open challenges from a theoretical 120

perspective. 121

In this survey, we perform an extensive review of 122

attention mechanisms for medical applications (including 123

Transformer-based architectures) with a theoretical discus- 124

sion and a strong focus on the methodologies and their 125

applications. In other works of the same genre, the authors 126

usually focus on enumerating state-of-the-art strategies with 127

their reported results. Besides, to our knowledge, this is the 128

first work that approaches the topic of attention mechanisms 129

from a broad perspective since we establish the connection 130

between the natural language processing and computer vision 131

domains, given the multi-modality property of medical data. 132

Also, we complement this discussion with the Transformer- 133

based architectures, as they currently are the most popular 134

attention-based models. Hence, we approach this topic with 135

a critical view and ask the following research questions: 136

1) Will attention mechanisms automatically improve the 137

predictive power of deep learning algorithms for med- 138

ical image applications? 139

2) What is the impact of integrating attention mechanisms 140

on model complexity? 141

3) Can we improve the degree of interpretability of deep 142

learning models solely through attention mechanisms? 143
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4) How practical is it to design and build attention mech-144

anisms for deep learning applications?145

To answer these, we develop an experimental protocol146

with three case studies on medical image classification,147

using established deep learning architectures with and with-148

out state-of-the-art attention blocks and a Transformer-based149

model. We address the open challenges of interpretability and150

transparency with the help of post-hoc explanation methods151

and perform a visual analysis of the impact of different atten-152

tion mechanisms in these outputs. We consider this survey153

a timely opportunity for the community to start questioning154

the extent of several claims made in the literature. In addition,155

our experimental protocol works as a reliable proxy for this156

analysis.157

The main contributions of this paper are:158

1) An extensive review of the use of attention mechanisms159

in machine learning methods (including Transformers)160

for several medical applications based on the types of161

tasks that can integrate several work pipelines of the162

medical domain: medical image classification, med-163

ical image segmentation, medical report understand-164

ing, and other tasks (medical image detection, medical165

image reconstruction, medical image retrieval, medical166

signal processing, and physiology and pharmaceutical167

research);168

2) An experimental case study on medical image classifi-169

cation with three different use cases that focus on the170

integration of attention mechanisms into established171

deep learning architectures, the analysis of their pre-172

dictive power, and a visual assessment of their saliency173

maps generated by post-hoc explanation methods;174

3) A critical analysis of the claims and potentialities of175

attention mechanisms presented in the literature;176

4) A discussion on the future challenges of medical177

applications and how they may benefit from attention178

mechanisms.179

Besides the Introduction, the remainder of this article is180

organized as follows: Background introduces a historical181

overview and the fundamental concepts of attention mech-182

anisms in machine learning, Literature Review presents an183

exhaustive review of the integration of attention mechanisms184

in algorithms for medical applications, Case Studies details185

the experimental work that accompanies this paper, and Con-186

clusions and Future Challenges summarizes the main conclu-187

sions of this survey and points to future directions towards the188

study of attention-based algorithms for medical applications.189

The code is publicly available in a GitHub repository.1190

II. BACKGROUND191

This section presents a historical overview and the funda-192

mental concepts regarding attention mechanisms in machine193

learning.194

Although there is no clear nor unified concept for attention,195

we can refer to it as the ability to flexibly manage limited196

1https://github.com/TiagoFilipeSousaGoncalves/survey-attention-
medical-imaging

computational resources. This research topic spans several 197

domains of knowledge and has been studied in conjunction 198

with many other topics in neuroscience and psychology [24], 199

including awareness, vigilance, saliency, executive control, 200

learning, and, more recently, artificial intelligence. There- 201

fore, we have different ways of perceiving the properties of 202

attention mechanisms at biological, psychological or compu- 203

tational levels [16]. From the perspective of the domains of 204

arousal, alertness or vigilance, attention could be described 205

as a general measure of alertness or the ability to engage with 206

the surroundings [25]. From the perspective of sensorial stim- 207

uli, attention is often deployed as an alert subject to specific 208

sensory input, allowing tight control over both the stimuli and 209

the locus of attention (e.g., selective audio attention, visual 210

attention) [26], [27], [28]. From the perspective of execu- 211

tive control [29], the assumption is that there are multiple 212

simultaneous competing tasks and that a central controller 213

is needed to decide which to engage in and when, hence, 214

attention can be thought of as the output of executive control, 215

since the executive control system must select the targets of 216

attention and communicate that to the systems responsible 217

for implementing it [16]. From the perspective of memory, 218

attention is understood as the ability of the brain to select the 219

subset of information that is well-matched to the needs of the 220

memory system, thus being a choice regarding the deploy- 221

ment of limited resources [16], [30]. From the perspective 222

of artificial intelligence, the first successful implementations 223

were accomplished with encoder-decoder structures in deep 224

neural network architectures, where the main goal is to learn 225

the best attention weights that connect the encoder to the 226

decoder [12]. 227

In the context of deep learning, RNNs were the pioneering 228

attention-based structures. This is mainly due to their ability 229

to learn and process sequential data (e.g., data with a tem- 230

poral component), which makes RNNs a class of machines 231

with dynamic states (i.e., their state depends on both the 232

input to the system and the current state), such that a signal 233

received at a given moment can alter the behaviour of the 234

network at a much later point in time [31]. These properties 235

allow RNNs to process variable-length structures without 236

further modification, a property that has been extensively 237

explored in several cognitive problems such as speech recog- 238

nition [32], [33], text generation [34], handwriting genera- 239

tion [35] and machine translation [36]. The work described 240

in [37] is perhaps the most classic example of the design 241

and implementation of computational attention mechanisms 242

with RNNs. In the original paper, the authors focused on the 243

task of neural machine translation and proposed an RNN- 244

based encoder-decoder architecture in which the task of the 245

encoder is to compress the input data (in this case, an English 246

sentence), while the task of the decoder is to receive and 247

decode this data to achieve a meaningful translation (in 248

this case, a French sentence). The principal motivation for 249

introducing an attention mechanism in this learning pipeline 250

is related to the difficulty of achieving a perfect alignment 251

between the input and output sequences, which is an almost 252
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impossible goal in most cases. The role of the attention253

mechanism is to learn weights that make the decoder focus254

on the relevant parts of the input sequences to produce mean-255

ingful outputs. At the time of publication, this methodology256

improved the state-of-the-art and paved the way for new257

research questions and exploration of novel attention-based258

frameworks.259

The study of attention mechanisms comprises two main260

research lines: language, text, and speech; and computer261

vision. Since the clinical practice (the subject of this sur-262

vey) involves multiple modalities of data, we examine these263

two main dimensions to help the reader become familiar264

with the various nomenclatures, taxonomies, and practices.265

We believe this introductory approach is important to under-266

stand the context of the discussion presented in the following267

sections.268

A. ATTENTION MECHANISMS FOR LANGUAGE,269

TEXT, AND SPEECH270

An insightful and comprehensive taxonomy for categorising271

attention mechanisms for language, text, and speech has272

been proposed by Chaudhari et al. [14]. The authors relate273

most of the concepts to the encoder-decoder model. Hence,274

for better understanding, we need to define the following:275

input sequences, the input vectors of the model (see Fig. 1’s276

‘‘Input Sequence’’); output sequences, the output vectors277

of the model (see Fig. 1’s ‘‘Output Sequence’’); candidate278

states, the hidden states of the encoder (see Fig. 1’s ‘‘Encoder279

Vector’’); query states, the hidden states of the decoder (see280

Fig. 1’s ‘‘Decoder Vector’’).281

Following this rationale, Chaudhari et al. [14] organise the282

different types of attention mechanisms into different (non-283

mutually exclusive) categories:284

• Number of abstraction levels: This category takes285

into account the number of representation/feature levels286

where the model will learn the attention weights. At this287

level, we may consider the following types of atten-288

tion: single-level attention, when the attention weights289

are computed only for the original input sequence; and290

multi-level attention, when we apply the attention mech-291

anism on multiple levels of abstraction of the input292

sequence, usually in a sequential manner.293

• Number of positions: This category takes into account294

the number of positions of the input sequence where295

the attention weights are learned. At this level, we may296

consider the following types of attention: soft attention,297

which consists of a weighted average of all the hidden298

states of the input sequence (i.e., the same as candidate299

states) to build the context vector (see Fig. 1’s ‘‘Context300

Vector’’); global attention, which is the term used in the301

machine translation field to describe soft attention; hard302

attention, which consists of a stochastic sampling of the303

hidden states to build the context vector; local attention,304

also part of the machine translation field, consists of305

the detection of an attention point and on the use of306

FIGURE 1. Block diagram of the general attention mechanism for
language, text and speech, according to [14].

a window around that point to compute local attention 307

weights. 308

• Number of representations: This category consid- 309

ers the number of different feature representations of 310

the input sequence used in the learning task. At this 311

level, we can consider the following types of atten- 312

tion: single-representational attention, which is the 313

most common and consists in learning the attention 314

weights using only a single feature representation;multi- 315

representational attention, which consists in learning the 316

attention weights using multiple representations (of the 317

same input sequence) and creating a context vector that 318

is the result of a weighted combination of these mul- 319

tiple representations and their attention weights; multi- 320

dimensional attention, which consists in computing the 321

attention weights along several dimensions of the repre- 322

sentation of the input sequence, which will result in the 323

computation of the relevance of each dimension to the 324

learning task. 325

• Number of sequences: This category takes into account 326

the number of input and output sequences. At this level, 327

we may consider the following types of attention: dis- 328

tinctive attention, when the candidate and query states 329

belong to two different input and output sequences 330

respectively; co-attention, when we consider multiple 331

input sequences at the same time and the main goal is to 332

jointly learn their attention weights; self-attention, when 333
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the query and candidate states belong to the same input334

sequence.335

An analysis of the literature shows that, until very recently,336

most of the works in attention mechanisms for language,337

text, and speech derived from the framework proposed by338

Bahdanau et al. [37]. In [38], the authors trained a long339

short-term memory network (LSTM) on the task of neural340

machine translation (i.e., English to German) and presented341

an explicit comparative study of local and global attention342

mechanisms. In [39], the authors considered speech recogni-343

tion as a sequence generation task (i.e., speech to transcrip-344

tion) and developed an attention mechanism with convolu-345

tional features to refine the quality of the output sequences.346

On the other hand, oppositely to this generalized use of347

RNN-based architectures, in [40], the authors proposed a348

fully-convolutional network (FCN) with an attention block349

that uses the dot-product operation trained to generate text350

from speech. Lately, the successful introduction of the Trans-351

former architecture [17], based solely on attention mecha-352

nisms, started a new paradigm for their study. Recent studies353

invest their efforts in the computational or design improve-354

ments to the baseline Transformer architecture [41], [42],355

[43], or in the proposal of novel Transformer-based architec-356

tures [44], [45], [46], [47], [48]. On the other hand, opposite357

to the trend on the increase of model complexity, Merity [49]358

revisited the fundamentals of LSTMs and proposed a single-359

head attention that could represent an alternative to the use360

of Transformer-based architectures.361

B. ATTENTION MECHANISMS FOR COMPUTER VISION362

Attention mechanisms for computer vision got their inspira-363

tion from the human visual system, which can detect whether364

certain features of an image are relevant or not [50]. In con-365

trast to the literature on attention mechanisms for language,366

text, and speech, there are already a number of interesting367

review articles on this topic [15], [19], [20], [21], [22]. How-368

ever, only the work of Guo et al. [21] has presented and dis-369

cussed a complete taxonomy that organizes the different types370

of attention mechanisms for computer vision into different371

categories:372

• Channel attention: This category follows the assump-373

tion that, in deep CNNs, different channels in different374

feature maps usually represent different objects [51].375

Therefore, the job of channel attention is to calibrate376

the weight of each channel adaptively. This mechanism377

acts as an object selector, thus determining what to pay378

attention to.379

• Spatial attention:This category is analogous to channel380

attention. Here, the job of the attention mechanism is381

to calibrate the weight of each region of the image382

adaptively. This mechanism acts as an adaptive spatial383

region selection process, thus determining where to pay384

attention.385

• Temporal attention: This category considers that data386

has a temporal dimension, therefore, in the case of387

computer vision tasks, this type of attention mechanism388

is often used for video processing. The job of tem- 389

poral attention is to calibrate the weight of each time 390

frame adaptively. This mechanism acts as a dynamic 391

time selection process, thus determining when to pay 392

attention. 393

• Branch attention: This category considers multi- 394

branched deep learning architectures. The job of branch 395

attention is to calibrate the weight of each branch adap- 396

tively. This mechanism acts as a dynamic branch selec- 397

tion process, thus determining which to pay attention to. 398

• Channel and spatial attention: This category com- 399

bines the advantages of both channel and spatial atten- 400

tion. This mechanism acts as a dynamic spatial region 401

and object selection process, thus determining what and 402

where to pay attention. 403

• Spatial and temporal attention: This category com- 404

bines the advantages of both spatial and temporal atten- 405

tion. This mechanism acts as a dynamic spatial region 406

and time-frame selection process, thus determining 407

where and when to pay attention. 408

The application of attention mechanisms in computer 409

vision is almost contemporaneous with the first proposals 410

for attention mechanisms in the language, text, and speech 411

domains. Below we present several representative examples 412

from each category. 413

With respect to channel attention, Hu et al. [52] pro- 414

posed the squeeze-and-excitation block. This module adap- 415

tively recalibrates channel-wise feature responses by explic- 416

itlymodelling dependencies between channels. This strength- 417

ens the representational power of CNNs by improving the 418

quality of spatial encodings across the feature hierarchy. 419

These properties have been explored as fundamental com- 420

ponents of attention mechanisms in [53] and [54]. Still on 421

the scope of channel attention, a different research line, 422

related to the self-attention mechanism, was further explored 423

in [55]. In this work, the authors proposed attention aug- 424

mentation mechanisms combining both convolutions and 425

self-attention by concatenating the convolutional feature 426

maps with a set of feature maps generated by self-attention. 427

This approach showed improvements in image classification 428

and object detection while maintaining the number of param- 429

eters. In [56], the authors addressed the topic of one-shot 430

learning and proposed a neural network architecture that 431

uses the semantic representation (i.e., the embedding) of 432

the label to obtain attention maps that are used to generate 433

image features. They also developed a multiple-attention 434

scheme to extract meaningful information from the input 435

images and used an auxiliary training set to learn the attention 436

weights. 437

Concerning spatial attention, Mnih et al. [57] designed a 438

novel RNN capable of extracting information from an image 439

or video by adaptively selecting a sequence of regions or 440

locations and only processing these regions at a high reso- 441

lution. Hence, this method can contribute to a high degree 442

of translation invariance and the ability to process vari- 443

able input sizes. Dai et al. [58] developed the deformable 444
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convolution, which adds flexibility to the regular (spatial)445

sampling grid of the standard convolution. The intuition446

behind this approach is that CNNs with these modules extract447

better features related to the objects of interest in the images448

(with particular focus on non-rigid objects), thus increasing449

their robustness to affine transformations. Wang et al. [59]450

revisited the concept of non-local attention and designed the451

non-local networks, which compute the response at a given452

spatial location as a weighted sum of the features at all453

positions in the features. Hu et al. [60] addressed the issue454

of context exploitation in CNNs and proposed a framework455

consisting of a pair of operators: the gather operator, which456

aggregates contextual information across large neighbour-457

hoods of each feature map, and the excite operator (inspired458

by [52]), which redistributes the pooled information to local459

features.460

Regarding temporal attention, Xu et al. [61] have proposed461

the attentive spatial-temporal pooling network architecture,462

which operates on video sequences by learning a similar-463

ity metric over the features extracted from recurrent and464

convolutional layers, and computing the attention weights465

on spatial (i.e., regions in each frame) and temporal (i.e.,466

frames over sequences) levels. Similarly, Chen et al. [62]467

developed an attention mechanism to optimise the similarity468

learning among short-video snippets, and Zhang et al. [63]469

proposed the self-and-collaborative attention network, which470

also learns a similaritymetric between feature representations471

of video-pairs.472

Regarding branch attention, Srivastava et al. [64] pro-473

posed the concept of highway networks which consists of474

deep neural networks with an LSTM-inspired attention gate475

that allows for computation paths along which information476

can flow across many layers (i.e., information highways).477

This work can be considered the precursor of this concept of478

branch attention. Later, Li et al. [65] designed selective kernel479

networks, which contain multiple CNN branches with differ-480

ent kernel sizes that are fused using an attention mechanism,481

guided by the information in these branches. Zhang et al. [66]482

presented a deep neural architecture that contains several483

replicated branches (i.e., the cardinal branches) that contain484

more replicated branches (i.e., the split branches). In this485

work, the information fusion is performed with an attention486

mechanism inspired by [52]. Chen et al. [67] proposed the487

dynamic convolution, which employs multiple parallel con-488

volution kernels dynamically and aggregates this information489

through a non-linear attention mechanism.490

With respect to channel and spatial attention,491

Woo et al. [68] have designed a convolutional block attention492

module that contains a channel attention module followed493

by a spatial attention module. According to the authors,494

this block can be easily integrated into any architecture and495

enables the regression of finer features for object detection.496

Following this research line, Zhao et al. [69] have proposed497

the point-wise spatial attention network for the task of image498

segmentation. This network processes contextual information499

from all positions in the feature map and uses a self-adaptive500

attention mechanism to connect all of them. Using generative 501

adversarial networks (GANs), Zhang et al. [70] explored a 502

self-attention mechanism to enable both the generator and 503

the discriminator to efficiently model relationships between 504

widely separated spatial regions. 505

In terms of spatial and temporal attention, Du et al. [71] 506

introduced the recurrent spatial-temporal attention network 507

in which they used an end-to-end LSTM-based network with 508

a spatio-temporal module to process video data, and devel- 509

oped an attention-based mechanism to fuse this information. 510

Song et al. [72] used RNNs and LSTMs together to process 511

video data and added spatial and temporal attention modules, 512

whose information is later fused. Gao et al. [73] addressed 513

the problem of visual captioning with hierarchical LSTM 514

models using spatio-temporal attention to select specific 515

regions or frames to predict the associated words and with 516

adaptive attention to model the importance of visual informa- 517

tion or the language contextual information. Yan et al. [74] 518

have also addressed the problem of visual captioning with an 519

architecture based on a CNN-encoder and an LSTM-decoder 520

with spatio-temporal attention to extract spatial and temporal 521

features in a video and guide the decoder to automatically 522

select the most significant regions in the most relevant tem- 523

poral segments for word prediction. 524

In addition, several works focus on multi-modal data, thus 525

mixing both the computer vision and the language, text, and 526

speech domains. In [50], the authors revisited the concepts 527

of hard and soft attention. They implemented an architecture 528

consisting of a convolutional block to extract image features 529

and an LSTM network with attention to generate the image 530

description (i.e., automatic image captioning). 531

Although CNN-based architectures had achieved high per- 532

formance, the transition to Transformer-based architectures 533

occurred almost naturally. Wu et al. [75] discussed three 534

open challenges that motivated the natural implementation of 535

Transformer-based architectures for computer vision tasks: 536

convolutions uniformly process all image patches regard- 537

less of their importance, which can lead to spatial ineffi- 538

ciency (e.g., image classification models should prioritize 539

foreground over background); not all images have all con- 540

cepts, therefore, applying high-level filters to all images 541

could be computationally inefficient (e.g., features related 542

to an image of a person may not be present in an image 543

of a flower); and, the convolution operation is not good 544

at establishing relationships between spatially-distant con- 545

cepts, which is an essential property in computer vision. 546

For this reason, Dosovitskiy et al. [18] have proposed the 547

Vision Transformer architecture. Analogously to the original 548

Transformer, to work with a Vision Transformer, one needs 549

to split an image into patches and provide the sequence of 550

linear embeddings of these patches as the input. Contempo- 551

raneously, Wu et al. [75] proposed a similar architecture that 552

aims to encode semantic concepts in a smaller number of 553

tokens and establish a relationship between spatially-distant 554

concepts through an attention mechanism in this token space. 555

Several modifications of the baseline architecture and their 556
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application to different tasks have already been reported [76],557

[77], [78], [79].558

III. LITERATURE REVIEW559

This section provides a comprehensive review of the inte-560

gration of attention mechanisms into algorithms for medical561

applications. For the sake of clarity, we structure this section562

into different types of tasks that can integrate different work-563

flows of the medical domain: medical image classification,564

medical image segmentation, medical report understanding,565

and other tasks (medical image detection, medical image566

reconstruction, medical image retrieval, medical signal pro-567

cessing, and physiological and pharmaceutical research). The568

work presented in this section results from the analysis of569

existing surveys (referenced in the Introduction) and a search570

in Google Scholar2 using the terms ‘‘attention mechanism’’,571

‘‘deep learning’’, and ‘‘medical’’.572

A. MEDICAL IMAGE CLASSIFICATION573

Below, we group the works of the most common approaches574

in recent works.575

1) BREAST LESION CLASSIFICATION576

In a multi-database and multi-class classification (i.e.,577

benign, malignant, and normal) approach for breast lesions578

in ultrasound images, Gheflati and Rivaz [80] studied the579

impact of using data augmentation, and transfer learning580

on Transformer- and CNN-based architectures, and reported581

similar, and sometimes improved, results. In a multiple582

instance learning approach (MIL), Ilse et al. [81] proposed a583

gated attention mechanism in deep neural networks for the584

classification of histopathological images (the authors also585

investigated the application of this methodology to colon586

cancer).587

2) COVID-19 CLASSIFICATION588

In the task of Coronavirus disease (COVID-19) classification,589

Han et al. [82] proposed a MIL algorithm for the automated590

screening of COVID-19 from volumetric chest computed591

tomography (CT) scans that employs an attention mechanism592

in the pooling operation to select the instances that may be593

meaningful for the final classification. Perera et al. [83] pro-594

posed a lightweight Vision Transformer that uses ultrasound595

images to discriminate between COVID-19, bacterial pneu-596

monia and healthy specimens. Jiang and Lin [84] proposed597

an architecture that combines two Transformer-based models598

to classify chest X-ray images as COVID-19, pneumonia,599

and healthy specimens. Liu and Yin [85] used X-ray image600

data and applied a Transformer architecture with transfer601

learning to train a model capable of discriminating between602

normal and COVID-19 cases. Park et al. [86] explored the603

potential of Vision Transformer architectures in a feder-604

ated learning setting for the classification of COVID-19 in605

chest X-ray images and reported that these architectures606

2https://scholar.google.com/

are suitable for collaborative learning in medical imaging. 607

Hsu et al. [87] approached chest CT scan data with an archi- 608

tecture that uses Transformer-based blocks to learn the con- 609

text of the CT slices, the information at the pixel level, and 610

the spatial-context features with the aid of a deep Wilcoxon 611

signed-rank test to determine the importance of each slice. 612

Zhang and Wen [88] proposed a framework for 3D CT 613

scans that consists of a U-Net [89] module to segment 614

the lungs and a Transformer-based module to extract fea- 615

tures and perform classification (i.e., COVID-19 diagnosis). 616

Mondal et al. [90] proposed a Vision Transformer with a 617

multi-stage transfer learning strategy that uses CT and X-ray 618

image modalities to discriminate between COVID-19, pneu- 619

monia, and healthy specimens. Gao et al. [91] tested a Vision 620

Transformer on 2D and 3D medical image data from CT 621

scans and reported improved results against common CNN 622

architectures for COVID-19 classification (i.e., COVID-19 623

against non-COVID-19). Similarly, Shome et al. [92] also 624

employed a Vision Transformer on 2D chest CT X-ray 625

images and tested its predictive performance in both binary 626

(i.e., COVID-19 against healthy specimens) and multi-class 627

(i.e., COVID-19 against bacterial pneumonia against healthy 628

specimens) settings, reporting improved results against com- 629

mon CNN architectures. Ambita et al. [93] used a Vision 630

Transformer to detect COVID-19 in CT scan images and 631

employed a data augmentation strategy that relied on the 632

generation of synthetic images with a self-attention-based 633

GAN. Park et al. [94] explored the use of a Vision Trans- 634

former architecture for COVID-19 classification that uses 635

low-level features generated using a backbone network. The 636

authors also performed several experiments using chest X-ray 637

databases from different institutions. 638

3) WHOLE SLIDE IMAGE CLASSIFICATION 639

Lu et al. [95] addressed the problem of glioma subtype clas- 640

sification (i.e., a multi-class task) in whole slide image (WSI) 641

data using a contrastive training framework that employs 642

a CNN backbone to learn relevant patch-level feature rep- 643

resentations, and a sparse-attention block to aggregate the 644

features of these multiple patches (i.e., multiple instances). 645

Chen et al. [96] employed a Transformer-CNN-based archi- 646

tecture to classify gastric histopathology WSIs in a binary 647

setting (i.e., normal against abnormal). Jiang et al. [97] 648

addressed the diagnosis of acute lymphocytic leukemia 649

through the classification of leukemic B-lymphoblast cells 650

(i.e., cancer cells) and B-lymphoid precursors (i.e., nor- 651

mal cells) with a Transformer-CNN ensemble, and a data 652

enhancement method that tackles the problem of class imbal- 653

ance. Zheng et al. [98] proposed a novel graph-based Vision 654

Transformer architecture to classify lung WSIs (i.e., adeno- 655

carcinoma, squamous cell carcinoma, and normal histology). 656

4) RETINAL DISEASE CLASSIFICATION 657

Bodapati et al. [99] proposed an architecture for the auto- 658

matic diagnosis of diabetic retinopathy that uses multiple 659

pre-trained CNNs with spatial pooling to extract features 660
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from color fundus retinal images and integrates gated atten-661

tion blocks to guide the model to focus more on lesion662

portions of the retinal images while paying less attention to663

the non-lesion regions. Yu et al. [100] addressed the task of664

retinal disease classification using fundus image data with a665

Vision Transformer trained under a MIL setting. Similarly,666

in diabetic retinopathy classification, Sun et al. [101] pro-667

posed a lesion-aware Transformer architecture that jointly668

learns to detect the presence of diabetic retinopathy and669

the location of lesion discovery, using an encoder-decoder670

structure. Several authors have addressed the task of diabetic671

retinopathy recognition in a multi-class setting (i.e., no dia-672

betic retinopathy, mild non-proliferative diabetic retinopa-673

thy, moderate diabetic retinopathy, severe non-proliferative674

diabetic retinopathy, and proliferative diabetic retinopa-675

thy) with a Vision Transformer architecture [102], [103].676

Yang et al. [104] used a hybrid CNN-Transformer archi-677

tecture to tackle ophthalmic image data in a multi-class678

setting (i.e., normal, diabetes, glaucoma, cataract, age-679

related macular degeneration, hypertension, myopia, and680

other abnormalities) using different data pre-processing681

strategies.682

5) MISCELLANEOUS CLASSIFICATION TASKS683

In lung cancer classification in screening CT,684

Al-Shabi et al. [105] have extended the study of non-local685

attention and proposed an architecture that is initially trained686

on simple examples and gradually grows to increase its ability687

to handle the task at hand, as the classification task becomes688

more difficult.Moranguinho et al. [106] applied this method-689

ology for the classification of lung biopsy histopatholog-690

ical images with respect to cancer classification and used691

post-model interpretability algorithms to assess the regions692

of interest for the predictions of their trained deep neural693

network. He et al. [107] proposed a deep learning architecture694

for depression recognition that combines a backbone CNN to695

extract features, a local attention module that focuses on parts696

of the input images, a global attention module to learn global697

patterns from the entire input images, and a weighted spatial698

pyramid pooling layer to learn the depression patterns after699

the feature aggregation operation. Dai et al. [108] explored700

the task of multi-modal and multi-class classification in head,701

neck, and kneemagnetic resonance imaging (MRI) data using702

a hybrid CNN-Transformer model, where the CNN module703

is used as a low-level feature extractor. Datta et al. [109]704

performed a comparative study of the effect of soft-attention705

combined with different backbone architectures in skin can-706

cer classification and reported several advantages against707

conventional methodologies. Barhoumi et al. [110] proposed708

a model that aggregates several feature maps extracted using709

multiple Xception CNNs [111] and uses these features to710

train a Vision Transformer for the intracranial hemorrhage711

classification problem, using CT images. Liang and Gu [112]712

added an attention mechanism to a backbone network based713

on the ResNet [113] to aid the diagnosis of Alzheimer’s714

disease in brain MRI data.715

FIGURE 2. U-Net architecture with attention blocks, as proposed in [123].
Please note that rectangles represent the feature maps of the encoder
and decoder, horizontal arrows represent the regular flow of information,
vertical elbow arrows represent the skip connections, and squares
represent the attention blocks.

B. MEDICAL IMAGE SEGMENTATION 716

Using well-known data sets related to different use cases 717

and working on top of [52], Roy et al. [114] verified that the 718

addition of a spatial-channel squeeze and excitation block 719

works as an attention mechanism in FCNs and improves 720

the quality of the segmentation maps. Interestingly, in most 721

recent papers, the authors approach the problem of medical 722

image segmentation using encoder-decoder structures that 723

generally comprise a CNN and a Transformer to extract 724

volumetric spatial feature maps, perform global feature mod- 725

eling and predict refined segmentation maps [115], [116], 726

[117], [118], although there are already some works that 727

replace the CNN-based modules at the encoder or decoder 728

levels and integrate other attention mechanisms to extract 729

features and model long-range dependencies [119]. More 730

recent methodologies on medical image segmentation are 731

taking advantage of a hybrid use of the Vision Transformer 732

and the U-Net with improved results regarding the quality of 733

segmentation maps [120], [121]. Wu et al. [122] proposed a 734

feature adaptive model that comprises a dual encoder with 735

CNN and Transformer branches to simultaneously capture 736

both local features and global context information. TheU-Net 737

architecture [89] has high relevance in biomedical image 738

segmentation. The high flexibility of this network’s structure 739

allows the integration of several computing blocks, such as 740

attentionmechanisms (see Fig. 2). Hence, as described below, 741

most authors employ a similar structure in their applications. 742

Below, we group the works of the most common 743

approaches in recent works. 744

1) BREAST LESION SEGMENTATION 745

Using breast ultrasound images, Vakanski et al. [124] inte- 746

grated an attention block into the well-known architec- 747

ture U-Net to learn semantic representations that prioritize 748

spatial regions for the task of breast tumor segmentation. 749

In breast tumor segmentation, using ultrasound imaging data, 750

Zhu et al. [125] developed a Transformer-based architecture 751

that incorporates prior information of the region of tumors 752

to obtain accurate segmentation. Following the most recent 753
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approaches of Transformer-based architectures for medical754

image analysis, Liu et al. [126] proposed a U-Net-like model755

that integrates an attention module to focus on the tumor756

region and combines CNN and Transformer blocks to extract757

and process features that may lead to improved segmentation758

maps.759

2) COMPUTATIONAL PATHOLOGY760

Using microscopic images, Prangemeier et al. [127] pro-761

posed an architecture based on a CNN-encoder and762

Transformer-decoder for the classification and instance seg-763

mentation of yeast cells. Using microscopy images of corneal764

endothelial cells, Zhang et al. [128] revisited the problem765

of cell segmentation with the proposal of the multi-branch766

hybrid Transformer network, which follows the main struc-767

ture of its predecessors (i.e., it contains both CNN and768

Transformer modules) to extract and process local and spa-769

tial features that may lead to refined segmentation maps.770

Shao et al. [129] addressed MIL using a Transformer-based771

architecture that explores morphological and spatial infor-772

mation and considers the correlation between instances.773

The authors tested their framework in different computa-774

tional pathology problems. Using high-resolution images,775

Nguyen et al. [130] performed a comparative analysis using776

architectures based on CNN and Transformer modules777

and reported improved results with the Transformer-based778

approaches. In a similar approach, using hyperspectral image779

data, Yun et al. [131] proposed an encoder-decoder architec-780

ture with CNN and Transformer blocks to extract and model781

spatial and spectral features, achieving competitive results782

against other methodologies.783

3) CARDIAC SEGMENTATION784

Li et al. [132] addressed the task of cardiac image segmenta-785

tion using MRI data from different domains with a generative786

adversarial model with an attention loss, proposed to translate787

the images from existing source domains, and a stack of788

data augmentation techniques to simulate real-world trans-789

formation to boost the segmentation performance for unseen790

domains. Concurrently, Kong and Shadden [133] tackled791

the same problem with a GAN with a cycle consistency792

loss (i.e., CycleGAN [134]) to generate images in different793

styles, exchanging the low-frequency features of images from794

different domains, and using an architecture based on an795

attention-gated U-Net that should learn to focus on cardiac796

structures of varying shapes and sizes while suppressing797

irrelevant regions. These strategies have been followed by798

the community in other contexts as well [135]. In the task of799

cardiac segmentation, using ultrasound images (i.e., echocar-800

diography), Deng et al. [136] developed an architecture that801

combines a CNN-based encoder-decoder to extract multi-802

level features, a Transformer structure to fuse these fea-803

tures, and a patch embedding layer created to reduce the804

number of parameters of the embedding layer and the size805

of the token sequence. Chen et al. [137] proposed a U-Net-806

like architecture that studied the potential of several set-807

tings (e.g., Transformer as encoder, hybrid CNN-Transformer 808

as encoder) that reported increased performances for car- 809

diac segmentation (the authors also reported increased per- 810

formances on multi-organ segmentation). Huang et al. [138] 811

also proposed a Transformer-based model that tackles several 812

tasks: the alignment of features, the enhancement of the 813

long-range dependencies and local context, and the mod- 814

eling of the long-range dependencies and local context of 815

multi-scale features. They experimented with this architec- 816

ture on cardiac segmentation databases (also on multi-organ 817

segmentation). 818

4) MULTI-TASK SEGMENTATION 819

Oktay et al. [123] addressed the task of multi-organ seg- 820

mentation (i.e., liver, pancreas, spleen) and worked on top 821

of the U-Net architecture by integrating attention modules 822

in the skip connections to promote the learning of relevant 823

features while suppressing feature activations in irrelevant 824

regions. Yao et al. [139] proposed aU-Net-based architecture 825

with deep feature concatenation and an attention mecha- 826

nism branched into several attention gates for the task of 827

scleral blood vessel segmentation. Following this methodol- 828

ogy, Chang et al. [140] added a Transformer module to the 829

encoder block of the baseline model and reported improved 830

results on multi-organ segmentation tasks. Using CT images, 831

Xie et al. [141] proposed a framework that connects a CNN 832

and a Transformer to extract both feature representations and 833

model the long-range dependency on these feature maps. 834

This model also employs a self-attention mechanism that 835

focuses on specific positions of the image, thus reducing 836

the computational complexity. Similarly, for kidney segmen- 837

tation using CT images, Shen et al. [142] also proposed an 838

encoder-decoder architecture that leverages the interaction 839

of CNN and Transformer modules to learn multi-scale fea- 840

tures to achieve improved segmentation results. Following 841

this work, Zhang et al. [143] developed an architecture for 842

multi-organ segmentation that runs a CNN-based encoder 843

and Transformer-based segmentation network in parallel and 844

fuses the features from these two branches to jointly make 845

predictions. Tang et al. [144] proposed a U-Net shaped archi- 846

tecture with a Transformer module for multi-organ segmen- 847

tation with 3D images and employs a specific pre-training 848

strategy with contrastive learning, masked volume inpaint- 849

ing, and 3D rotation prediction. Using images from differ- 850

ent modalities (i.e., MRI and CT) and organs (i.e., brain 851

cortical plate, hippocampus, pancreas), Karimi et al. [145] 852

proposed an architecture based entirely on Transformers that 853

uses self-attention between neighboring image patches, with- 854

out requiring any convolution operations. Cao et al. [146] 855

also proposed a U-Net architecture composed solely of 856

Transformer-based modules for multi-organ segmentation 857

that uses skip-connections for local-global semantic feature 858

learning. On colonoscopy images, Sang et al. [147] proposed 859

an architecture that takes advantage of a ResNeSt back- 860

bone [66] connected to the coupled U-Nets [148] architecture 861

and several attention gates to combine multi-level features 862
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and yield accurate polyp segmentation. In a multi-task seg-863

mentation approach, Zhang et al. [149] developed a method864

that seeks to integrate multi-scale attention and CNN feature865

extraction using a pyramidal network architecture, by work-866

ing on multi-resolution images. Lin et al. [150] proposed867

an encoder-decoder architecture comprised of hierarchical868

Transformer-based modules to model the long-range depen-869

dencies and the multi-scale context connections during the870

process of down-sampling and up-sampling. Li et al. [151]871

proposed a different framework based on Transformers, that872

uses a squeeze-and-excitation attention module to both reg-873

ularize the self-attention mechanism of Transformers and874

learn diversified representations. Ranjbarzadeh et al. [152]875

addressed brain tumor segmentation inmulti-modalMRI data876

using a cascade CNN that processes both local and global fea-877

tures in two different routes, combined with a distance-wise878

attention mechanism that considers the effect of the location879

of the center of the tumor and the brain. Ribeiro [153]880

also addressed the task of brain tumor segmentation and881

proposed an architecture inspired by the U-Net that integrates882

an attention mechanism with adaptive-scale context to cap-883

ture multi-scale information by processing parallel branches884

with different scales. Petit et al. [154] designed a U-shaped885

architecture for image segmentation with self-attention and886

cross-attention from Transformers (i.e., U-Transformer).887

They performed experiments on two abdominal CT-image888

databases and obtained superior performancewhen compared889

to U-Net-based models. Regarding skin lesion segmentation,890

Wang et al. [155] proposed a boundary-aware Transformer891

that aims to take advantage of boundary-wise priors through892

a boundary-wise attention gate that highlights the ambiguous893

boundaries to generate attention maps to guide the train-894

ing. For tooth root segmentation, Li et al. [156] proposed895

a Transformer-based architecture with the structure of the896

U-Net backbone and optimized the training of this model897

with a Fourier Descriptor loss function that takes advantage of898

prior knowledge related to shape. Li et al. [157] explored the899

same task through an anatomy-guided multi-branch Trans-900

former with multi-head attention that employs a polyno-901

mial curve fitting segmentation strategy (based on keypoint902

detection) to extract anatomy features. Following the work903

described in [157], Guo et al. [158] implemented a similar904

approach for retinal vessel segmentation. Regarding this task,905

several other approaches were proposed. Wang et al. [159]906

introduced a network that focuses on refining segmentation907

errors by using an attention mechanism that considers the908

differences between the ground truth and the predicted masks909

as the (source of) supervision for learning the attention maps.910

Guo et al. [160] proposed a network that builds upon residual911

blocks and spatial attention to promoting the extraction912

of complex vascular features while alleviating overfitting.913

Du et al. [161] proposed aU-Net-based architecture that con-914

tains pyramid pooling [162] modules and integrates an atten-915

tion mechanism in its skip connections to promote the ability916

to obtain global information and efficient learning of seman-917

tic features. Gao et al. [163] developed a deep network that918

combines a feature fusion residual module with channel and 919

spatial attention mechanisms to promote the extraction of low 920

and high-dimensional features and effectively explore feature 921

dependencies at spatial and channel levels. Amer et al. [164] 922

created a U-Net architecture that comprises residual blocks 923

and a multi-scale spatial attention module to capture and 924

select multi-scale context information while ensuring an 925

effective fusion of this information. Zhao et al. [165] also 926

proposed a U-Net architecture that focuses on extracting 927

better features at spatial and channel levels. After revisiting 928

the work described in [157], Jin et al. [166] employed a 929

3D U-Net architecture with residual blocks and an atten- 930

tion module to extract volumes of interest in liver and 931

brain CT imaging data and perform tumor segmentation. 932

Sobirov et al. [167] applied the Transformer-based model 933

proposed by Hatamizadeh et al. [118] to the tasks of head 934

and neck tumor segmentation using multi-modal data (i.e., 935

CT and PET images) and compared their results with CNN- 936

based approaches. Yan et al. [168] also employed a U-Net- 937

based structure for the task of multi-organ segmentation 938

in 3D medical image data, however, with slightly different 939

changes: in their approach, they used a CNN-encoder and 940

CNN-decoder with a Transformer model in between to fuse 941

contextual information in the neighboring image slices. 942

C. MEDICAL REPORT UNDERSTANDING 943

1) MEDICAL REPORT GENERATION 944

Using two medical databases containing radiological and 945

pathological images, Jing et al. [169] proposed a methodol- 946

ogy consisting of amulti-task deep learningmodel that jointly 947

performs the prediction of tags and the generation of para- 948

graphs, a co-attention mechanism for locating regions con- 949

taining abnormalities and generating narrations for them, and 950

a hierarchical LSTM model for generating long paragraphs. 951

One of the first mentions of using Transformer architectures 952

to generate medical image reports is described in [170]. 953

In this work, the authors used X-ray data and proposed a 954

hierarchical framework trained with reinforcement learning. 955

This framework consists of an encoder that extracts visual 956

features through a bottom-up attention mechanism aimed 957

at identifying regions of interest and extracting top-down 958

visual features, and a Transformer-based non-recurrent cap- 959

tioning decoder aimed at generating a coherent paragraph 960

of medical image reports. Lovelace and Mortazavi [171] 961

developed a chest X-ray report generation algorithm that 962

consists of two training stages: the training of the report 963

generationmodel (based on a Transformer architecture) using 964

a standard language generation objective, and, after, the 965

fine-tuning of this model on clinical observations extracted 966

from reports sampled from the same model to regularize 967

the degree of coherence between the observations from 968

the generated and ground truth reports. In a similar task, 969

Srinivasan et al. [172] proposed a deep framework that uses 970

a CNN to extract features of the images and generate tag 971

embeddings for each image, and uses Transformers to encode 972
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the image and tag features with self-attention to get a973

finer representation. Alternatively, Miura et al. [173] applied974

a Transformer-based architecture trained with reinforcement975

learning which comprises two different rewards, namely, one976

that encourages the system to generate radiology domain977

entities consistent with the reference, and one that uses nat-978

ural language inference to encourage these entities to be979

described in inferentially consistent ways. On the other hand,980

Chen et al. [174] proposed to generate radiology reports with981

a memory-driven Transformer, where a relational memory is982

designed to record key information of the generation pro-983

cess and a memory-driven conditional layer normalization984

is applied to incorporate the memory into the decoder of985

Transformer. Also in automatic chest X-ray report generation,986

Liu et al. [175] created a contrastive-attention methodology987

that compares a given input image with normal images to988

distill contrastive information that better represents the visual989

features of abnormal regions, thus providing more accurate990

descriptions for an interpretable diagnosis and improving991

the quality of the generated reports. Najdenkoska et al. [176]992

tackled the same problem with variational topic inference993

that consists of modeling a set of topics as latent variables994

to guide sentence generation by aligning image and language995

modalities in a latent space. Each topic contributes to the996

generation of a sentence in the report. The entire pipeline is997

refined with a visual attention module that enables the model998

to attend to different locations in the image and generate999

more informative descriptions. Alfarghaly et al. [177] pro-1000

posed a Transformer-based pipeline that involves the use of a1001

fine-tuned CheXNet model [178] to predict specific tags from1002

the image, the computation of weighted semantic features1003

from the predicted tag’s pre-trained embeddings, and the1004

conditioning of a pre-trained distilled GPT2 [179] model on1005

the visual and semantic features to generate the full medical1006

reports. Amjoud et al. [180] proposed an encoder-decoder1007

framework that combines the benefits of transfer learning1008

for feature extraction and the Transformer architecture1009

for medical report generation. Tipirneni et al. [181] pro-1010

posed a Transformer-based architecture to address multi-1011

variate clinical time series with missing values. A different1012

approach was discussed in [182], where the authors pro-1013

pose an encoder-decoder architecture that comprises both1014

CNN and Transformer modules and aims to explicitly quan-1015

tify the inherent visual-textual uncertainties existing in the1016

multi-modal task of radiology report generation both at the1017

report and sentence levels, and explore a novel method1018

to measure the semantic similarity of radiology reports,1019

which seems to better capture the characteristics of diag-1020

nosis information. A different research line focuses on imi-1021

tating the working patterns of radiologists, which typically1022

consist of examining the abnormal regions and assigning1023

the disease topic tags to these regions and then relying1024

on the years of prior medical knowledge and prior work-1025

ing experience to write reports [183]. Hence, in [183], the1026

authors proposed a posterior-and-prior knowledge exploring-1027

and-distilling approach that consists of three modules: the1028

posterior knowledge explorer, which aims to provide explicit 1029

abnormal visual regions to alleviate visual data bias; the 1030

prior knowledge explorer, which aims to explore the prior 1031

knowledge from the prior medical knowledge graph (i.e., 1032

medical knowledge) and prior radiology reports (i.e., work- 1033

ing experience) to alleviate textual data bias; and the multi- 1034

domain knowledge distiller that aggregates this processed 1035

knowledge and generates the final reports. A very close 1036

framework was described by Liu et al. [184], in which the 1037

authors proposed an unsupervised model knowledge graph 1038

auto-encoder which accepts independent sets of images and 1039

reports during training, and consists of three modules: the 1040

pre-constructed knowledge graph, that works as the shared 1041

latent space and aims to bridge the visual and textual domains; 1042

the knowledge-driven encoderwhich projectsmedical images 1043

and reports to the corresponding coordinates in that latent 1044

space; and the knowledge-driven decoder that generates a 1045

medical report given a coordinate in that latent space. This 1046

modular structure is also employed by Nguyen et al. [185], 1047

which added three complementary modules: a CNN-based 1048

classification module that produces an internal checklist 1049

of disease-related topics (i.e., the enriched disease embed- 1050

ding); a Transformer-based generator that generates the med- 1051

ical reports from the enriched disease embedding and pro- 1052

duces a weighted embedding representation; and an inter- 1053

preter that uses the weighted embedding representation to 1054

ensure consistency concerning disease-related topics. Simi- 1055

larly, You et al. [186] proposed a framework, which includes 1056

two different attention-based modules: the align hierarchical 1057

attention module that first predicts the disease tags from the 1058

input image and then learns the multi-grained visual features 1059

by hierarchically aligning the visual regions and disease 1060

tags; and the multi-grained Transformer module that uses 1061

the multi-grained features to generate the medical reports. 1062

Still, on this line, Hou et al. [187] proposed a CNN-RNN- 1063

based medical Transformer trained end-to-end, capable of 1064

extracting image features and generating text reports that aim 1065

to fit seamlessly into clinical workflows. 1066

2) MISCELLANEOUS TASKS 1067

Recently, Zhou et al. [188] proposed a cross-supervised 1068

methodology that acquires free supervision signals from orig- 1069

inal radiology reports accompanying the radiography images, 1070

and employs a Vision Transformer, designed to learn joint 1071

representations from multiple views within every patient 1072

study. Regarding automatic surgical instruction generation, 1073

Zhang et al. [189] introduced a Transformer-based encoder- 1074

decoder architecture trained with self-critical reinforcement 1075

learning to generate instructions from surgical images, and 1076

reported improvements against the existing baselines over 1077

several caption evaluation metrics. Wang et al. [190] pro- 1078

posed a Transformer-base training framework designed for 1079

learning the representation of both the image and text data, 1080

either paired (e.g., images and texts from the same source) 1081

or unpaired (e.g., images from one source coupled with texts 1082

from another source). They applied their methodology to 1083
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different chest X-ray databases and performed experiments in1084

three different applications, i.e., classification, retrieval, and1085

image regeneration.1086

D. OTHER TASKS1087

This subsection includes medical tasks whose interest in1088

the field is currently increasing: medical image detection,1089

medical image reconstruction, medical image retrieval, med-1090

ical signal processing, and physiology and pharmaceutical1091

research.1092

1) MEDICAL IMAGE DETECTION1093

Regarding colorectal polyp detection, Shen et al. [191]1094

approached several colonoscopy databases and proposed an1095

architecture constituted by a CNN for feature extraction,1096

Transformer encoder layers interleaved with convolutional1097

layers for feature encoding and recalibration, Transformer1098

decoder layers for object querying, and a feed-forward1099

network for detection prediction. Similarly, Liu et al. [192]1100

addressed the same task using an encoder-decoder archi-1101

tecture with a ResNet50-based CNN backbone as the1102

encoder, and a Transformer-based module as the decoder1103

and Mathai et al. [193] addressed the task of lymph node1104

detection using MRI data employing analogous strategies.1105

2) MEDICAL IMAGE RECONSTRUCTION1106

Gong et al. [194] addressed the reconstruction of linear para-1107

metric images from dynamic positron emission tomography1108

(PET) and implemented a 3D U-Net [195] model with an1109

attention layer that focuses on prior anatomical information1110

during training to improve the quality of the reconstruction1111

of dynamic PET images of the human brain. Liang and1112

Gu [112] also explored the reconstruction of brain MRI data1113

as a regularization strategy to aid the diagnosis of Alzheimer’s1114

disease.1115

3) MEDICAL IMAGE RETRIEVAL1116

Grundmann et al. [196] and Kim et al. [197] developed new1117

methods to perform an automatic retrieval and analysis of1118

clinical notes. Li et al. [198] and Ma et al. [199] developed1119

new models for the automated evaluation of root canal ther-1120

apy and significant stenosis detection in coronary CT angiog-1121

raphy of coronary arteries, respectively.1122

4) MEDICAL SIGNAL PROCESSING1123

Nauta et al. [200] explored the combination of attention1124

mechanisms and causal discovery techniques. Using sim-1125

ulated functional MRI data containing blood-oxygen-level1126

dependent data sets for 28 different underlying brain net-1127

works, this work proposed a deep learning framework based1128

on attention that learns a causal graph structure by discover-1129

ing causal relationships in observational time series data.1130

5) PHYSIOLOGY AND PHARMACEUTICAL RESEARCH1131

Lately, deep learning has also revealed itself to be a popular1132

framework for physiology and pharmaceutical research (e.g.,1133

drug combination prediction, protein residue-residue contact 1134

prediction). Naturally, since this field also involves high-stake 1135

decisions, the increase in the predictive performance of deep 1136

learning architectures in several problems of this topic [201], 1137

[202], [203], [204] motivated the need to explain the internal 1138

mechanisms of these algorithms and improve their explain- 1139

ability. Interestingly, the strategy employed by machine 1140

learning practitioners is based on attention mechanisms. 1141

Therefore, we consider it relevant to include works on this 1142

matter in this survey, even though they may not be considered 1143

direct medical applications. Filipavicius et al. [205] studied 1144

the use of Transformer-based language models for protein 1145

classification using long sequences. The authors also per- 1146

formed several experiments on the compression of the protein 1147

sequences and prepared new pre-training and protein-protein 1148

binding prediction databases. Chen et al. [206] presented an 1149

attention-based (i.e., regional and sequence attention) CNN 1150

for protein contact prediction and for the identification of 1151

interpretable patterns that contain useful insights into the 1152

key fold-determining residues in proteins. Wang et al. [207] 1153

recently proposed a deep learning framework based on graph 1154

neural networks with an attention mechanism to identify drug 1155

combinations that can effectively inhibit the viability of spe- 1156

cific cancer cells. Khan et al. [208] used a Transformer-based 1157

architecture for the analysis of high-dimensional gene expres- 1158

sion data and reported improved results on the task of lung 1159

cancer sub-types classification. 1160

IV. CASE STUDIES 1161

Most of the works of the previous section are often based 1162

on predictive performance (i.e., accuracy) rather than show- 1163

ing that these algorithms are moving towards the increase 1164

of transparency or interpretability. In a high-stake decision 1165

area such as healthcare, the authors must care about framing 1166

their proposals to the context of the application. Therefore, 1167

we decided to design an experimental set of case studies, 1168

involving three different use cases (i.e., breast lesion, chest 1169

pathology, and skin lesion), wherein the main goal is to 1170

provide insight into the impact of using attention mechanisms 1171

in deep learning algorithms for medical image applications. 1172

On the one hand, we assess this impact from the perspective 1173

of predictive performance (i.e., accuracy). On the other hand, 1174

we report post-model attributionmaps obtained with different 1175

interpretability frameworks to visualize the image regions 1176

that contributed most to the final predictions. We acknowl- 1177

edge that the visual assessment of these attribution maps is 1178

subject to a high degree of subjectivity. However, we argue 1179

that this analysis can serve as an indirect evaluation of the 1180

degree of interpretability of these models. 1181

A. DATA 1182

To ensure that our conclusions are independent of the data, 1183

we selected medical image classification databases related to 1184

three different use-cases: diabetic retinopathy, chest patholo- 1185

gies and skin lesion classification. Table 1 presents the num- 1186

ber of training, validation and test examples for each data set, 1187
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TABLE 1. Data splits and meaning of labels for each data set.

and the meaning of the labels we used in this classification1188

case study.1189

1) APTOS20191190

The APTOS2019 data set contains retinography images taken1191

under a variety of imaging conditions (mydriatic vs. non-1192

mydriatic) and from different camera models and ethnicities.1193

The data set was generated by Aravind Eye Hospital in India1194

in cooperationwithAsia Pacific Tele-Ophthalmology Society1195

(APTOS). Each retinal image has been graded independently1196

by two ophthalmologists, with any disagreements adjudicated1197

by a third ophthalmologist. A retinopathy severity score was1198

assigned to each image according to the NHS diabetic eye1199

screening guidelines3 as R0 (no diabetic retinopathy), R11200

(background), R2 (pre-proliferative), R3 (proliferative), M01201

(no visible maculopathy), M1 (maculopathy). A curated ver-1202

sion of this data set was used in the APTOS 2019 Blindness1203

Detection hosted on Kaggle.4 For the binary classification1204

case, we grouped all the non-R0 classes into the ‘‘diabetic1205

retinopathy’’ class (see Table 1).1206

2) ISIC20201207

The ISIC2020 [209] data set contains dermoscopic training1208

images of unique benign and malignant skin lesions from1209

over 2000 patients. Each image is associated with one of1210

these individuals using a unique patient identifier. All malig-1211

nant diagnoses have been confirmed via histopathology, and1212

benign diagnoses have been confirmed using either expert1213

agreement, longitudinal follow-up, or histopathology. The1214

data set was generated by the International Skin Imaging Col-1215

laboration (ISIC) and images were collected by the following1216

sources: Hospital Clínic de Barcelona, Medical University of1217

Vienna, Memorial Sloan Kettering Cancer Center, Melanoma1218

Institute Australia, University of Queensland, and the Univer-1219

sity of Athens Medical School. The data set was curated for1220

the SIIM-ISIC Melanoma Classification Challenge hosted on1221

Kaggle.51222

3) MIMIC-CXR1223

The MIMIC Chest X-ray (MIMIC-CXR) Database v2.0.01224

[210] is a large publicly available data set of chest radiographs1225

in the Digital Imaging and Communications in Medicine1226

(DICOM) format with free-text radiology reports. The data1227

set contains 227835 imaging studies for 65379 patients of the1228

3https://www.gov.uk/government/collections/diabetic-eye-screening-
commission-and-provide

4https://www.kaggle.com/c/aptos2019-blindness-detection
5https://www.kaggle.com/c/siim-isic-melanoma-classification/overview

Beth Israel Deaconess Medical Centre Emergency Depart- 1229

ment (Boston, MA) between 2011–2016. Each imaging study 1230

can contain one or more images, usually a frontal and a lateral 1231

view. A total of 377,110 images are available in the data set. 1232

Studies are made available with a semi-structured free-text 1233

radiology report that describes the radiological findings of 1234

the images, written by a practicing radiologist during routine 1235

clinical care. The data set is de-identified to satisfy the US 1236

Health Insurance Portability and Accountability Act of 1996 1237

(HIPAA) Safe Harbor requirements. Protected health infor- 1238

mation (PHI) has been removed. For the binary classification 1239

case we used a subset of images of the anterior-posterior 1240

view related to the presence or absence of pleural efusion 1241

(see Table 1). 1242

B. METHODOLOGY 1243

We divided the experimental part of this survey into several 1244

phases, described below. We conducted all the experiments 1245

using the PyTorch library [211] for Python. 1246

1) BACKBONE MODELS 1247

In the first phase of this study, we trained two deep learning 1248

backbones (i.e., DenseNet-121 [212], ResNet-50 [113]) on 1249

each data set. DenseNet-121’s architecture [212] allows con- 1250

necting all layers (with matching feature-map sizes) directly 1251

with each other, thus improving the flow of information and 1252

gradients throughout the network, and facilitating their train- 1253

ing. ResNet50’s architecture introduced the deep residual 1254

learning framework, which consists of adding skip connec- 1255

tions that perform identity mapping, and adding their outputs 1256

to the outputs of the stacked layers. We refer the reader to 1257

the original papers for more details. We used these backbone 1258

models in our experiments because they are well known and 1259

widely used in the deep learning community. In this work, 1260

we refer to these models as DenseNet-121 and ResNet-50. 1261

2) SQUEEZE-AND-EXCITATION ATTENTION BLOCK 1262

In the second phase, we adapted the Squeeze-and-Excitation 1263

(SE) attention block [52] (see Fig. 3) to each of the back- 1264

bones and trained these new architectures on the three data 1265

sets. According to the authors of the original paper [52], 1266

this attention block was designed to adaptively recalibrate 1267

channel-wise feature responses by explicitly modeling inter- 1268

dependencies between channels. Since one of the original 1269

implementations uses the ResNet-50, we used the author’s 1270

implementation in our study, which consists of integrating the 1271

SE block between the residual layers and the activation func- 1272

tion (in this case, the rectified linear unit (ReLU)). Following 1273

this rationale, in the case of DenseNet-121, we integrated 1274

the SE block between the dense and the transition blocks. 1275

We decided to use the SE block in our experiments because 1276

it was one of the first proposals of channel attention for 1277

computer vision, and it is widely used by the community as a 1278

comparison reference. Besides, since we are building our case 1279

studies in medical image classification using RGB images, 1280

our interests also rely on studying the effects of attention on 1281

VOLUME 10, 2022 98921



T. Gonçalves et al.: Survey on Attention Mechanisms for Medical Applications: Are We Moving Toward Better Algorithms?

FIGURE 3. Block diagram of the Squeeze-and-Excitation (SE) attention
block, according to [52].

FIGURE 4. Block diagram of the Convolutional Block Attention Module
(CBAM), according to [68].

the channel dimension. In this work, we refer to these models1282

as SEDenseNet-121 and SEResNet-50.1283

3) CONVOLUTIONAL BLOCK ATTENTION MODULE1284

In the third phase, we adapted the Convolutional Block1285

Attention Module (CBAM) [68] (see Fig. 4) to each of the1286

backbones and trained these new architectures on the three1287

data sets. According to the authors of the original paper, the1288

CBAM mechanism integrates two specific attention blocks:1289

the channel attention module, which aims to produce a chan-1290

nel attention map by exploiting the inter-channel relationship1291

of features and is considered as a feature detector (see Fig. 5);1292

and the spatial attention module, which aims to generate a1293

spatial attention map by utilizing the inter-spatial relationship1294

of features, thus being complementary to the channel atten-1295

tion (see Fig. 6). Like the SE attention block, we integrated1296

the CBAM mechanism at the same topographical location1297

of the architectures of the backbone models. Following the1298

decision on the SE block, we considered it important to study1299

the spatial dimension of images. Therefore, since CBAM1300

integrates both the attention and spatial dimensions in its1301

pipeline, we can perceive this module as an upgrade to the1302

SE block. Besides, it is important to note that this module1303

is also well-known in the community, and, therefore, it is1304

validated as well. In this work, we refer to these models as1305

CBAMDenseNet-121 and CBAMResNet-50.1306

4) DATA-EFFICIENT IMAGE TRANSFORMER1307

In the fourth phase, we tested a Transformer-based archi-1308

tecture composed solely of attention mechanisms. The1309

Data-efficient image Transformer (DeiT) [79] is an archi-1310

tecture inspired by the Vision Transformer [18], and trained1311

with fewer parameters. In this case, we used the DeiT-Ti1312

variation [79], which has a comparable number of parameters1313

FIGURE 5. Block diagram of the Channel Attention Module of the
Convolutional Block Attention Module (CBAM), according to [68].

FIGURE 6. Block diagram of the Spatial Attention Module of the
Convolutional Block Attention Module (CBAM), according to [68].

against the chosen CNN backbones. Besides being vali- 1314

dated by the community (as in previous examples), this 1315

Vision Transformer architecture has a proportional number 1316

of parameters (see Table 4) to the backbone models, thus 1317

allowing us to mitigate eventual model complexity effects 1318

on the predictive performance of this model. In this work, 1319

we refer to this model as DeiT. 1320

5) POST-MODEL INTERPRETABILITY 1321

In the fifth phase, we generated visual explanation maps 1322

(i.e., saliency maps) using the Deep Learning Important 1323

FeaTures (DeepLIFT) [213] and the Layer-wise Relevance 1324

Propagation (LRP) [214] post-hocmethods. DeepLIFT [213] 1325

compares the activation of each neuron to its related refer- 1326

ence activation, and assigns contribution scores according 1327

to the difference. LRP [214] is a methodology that aims to 1328

create visualizations of the contributions of single pixels to 1329

predictions. We decided to employ this strategy as a proxy 1330

for the degree of interpretability of models, thus allowing 1331

our work to be comparable to current research. We used the 1332

Captum [215] library for Python to generate these post-hoc 1333

saliency maps for the backbones and their attention-based 1334

versions. Regarding the DeiT, we refer the reader to [216], 1335

which proposed a framework to generate LRP attributions for 1336

Transformer-based architectures. 1337

6) DATA PROCESSING 1338

Regarding the data processing pipeline, all the images 1339

were resized to the dimensions of 224 × 224, and a 1340

z-normalization was applied to each RGB channel. Themean 1341

and standard deviation parameters used in this operation 1342

depend on the initialization of the weights of the model. 1343

In the case of DenseNet-121, ResNet-50, SEDenseNet-121, 1344

SEResNet-50, CBAMDenseNet-121 and CBAMResNet-50, 1345

the weights were initialized from a pre-training on the Ima- 1346

geNet database [217] with mean = [0.485, 0.456, 0.406], 1347

and std = [0.229, 0.224, 0.225]. In the case of DeiT, the 1348
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TABLE 2. Data augmentation parameters used during the training step of
all the phases.

TABLE 3. Set of hyper-parameters used during the training step of all the
phases. Please note that we present the batch size as a closed interval
since we had to adapt its value during some of the training runs due to
computational constraints (e.g., availability of GPU RAM).

weights were initialized from a pre-training on the ImageNet1349

database with mean = [0.500, 0.500, 0.500], and std =1350

[0.500, 0.500, 0.500].1351

7) DATA AUGMENTATION1352

Regarding the data augmentation strategy, we decided1353

to create a pipeline composed of several random affine1354

transformations, i.e., random rotations, random transla-1355

tions, random scaling and random horizontal flip. Table 21356

presents the parameters of data augmentation used in our1357

experiments.1358

8) TRAINING1359

We trained all the models in the different databases using1360

the same optimization hyper-parameters. During training,1361

we saved the best model weights according to a decrease1362

in the validation loss. Table 3 presents the optimization1363

hyper-parameters used in our experiments. We also con-1364

ducted a low data regime experiment, hence, all the models1365

were trained using 1%, 10%, 50% and 100% of the training1366

data. In imbalanced data sets (i.e., ISIC2020, MIMIC-CXR)1367

we applied class-weights in the loss function.1368

C. RESULTS1369

1) PREDICTIVE PERFORMANCE1370

Figs. 7, 8 and 9 respectively present the predictive perfor-1371

mance (i.e., accuracy) results of the different models on the1372

APTOS2019, ISIC2020 and MIMIC-CXR data sets, using1373

different percentages of training data.1374

2) MODEL COMPLEXITY1375

Table 4 presents the model complexity (i.e., the number1376

of parameters) information for the models used in our1377

experiments.1378

FIGURE 7. Predictive performance (i.e., accuracy) results of the different
models on the APTOS2019 data set, using different percentages of
training data.

FIGURE 8. Predictive performance (i.e., accuracy) results of the different
models on the ISIC2020 data set, using different percentages of training
data.

TABLE 4. Model complexity (i.e., the number of parameters) information
for the models used in our experiments.

3) POST-MODEL INTERPRETABILITY 1379

Tables 5, 6 and 7 present examples of LRP and DeepLIFT 1380

post-hoc saliency maps obtained for images of the 1381

APTOS2019 data set with labels 0 and 1 correctly classified, 1382
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TABLE 5. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the APTOS2019 data set with the label 0 correctly classified as 0 by all
models.

TABLE 6. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the APTOS2019 data set with the label 1 correctly classified as 1 by all
models.

and with label 0 incorrectly classified by all models, respec-1383

tively. The same structure is followed for examples of1384

the ISIC2020 (Tables 8, 9, 10 and 11) and MIMIC-CXR1385

(Tables 12, 13, 14 and 15) data sets, with the addition of1386

examples from the label 1 incorrectly classified by all models.1387

We used the Matplotlib [218] library for Python to generate1388

these saliency maps visualizations, using the ‘‘bwr’’ color1389

map, which represents negative values in blue, zero values1390

in white and positive values in red.1391

D. DISCUSSION1392

1) PREDICTIVE PERFORMANCE1393

All the experiments related to the predictive performance1394

of deep learning models on the different data sets suggest1395

that it is not clear that one should expect improvements1396

in their accuracy when using attention mechanisms. Sev-1397

eral attention-based architectures tend to lower their pre-1398

dictive performances against their baseline architectures.1399

Besides, even when directly comparing a Transformer-based1400

architecture (i.e., DeiT), the same baseline architectures seem 1401

to achieve comparable results. Given that the intuition behind 1402

attention mechanisms is that these end up learning the most 1403

relevant features, one might expect that attention-based archi- 1404

tectures would perform better when trained in low data 1405

regimes. However, results obtained in all data sets suggest that 1406

this might not be the case. In fact, we can observe that, apart 1407

from the Transformer-based architecture, the baseline back- 1408

bone models often perform better. Hence, it is reasonable to 1409

conclude that the use of attentionmechanisms will not always 1410

bring benefits to the training of deep learning algorithms, 1411

an argument that contrasts with a trending narrative in most 1412

recent papers. On the other hand, the results reported in the 1413

literature often relate to marginal or residual improvements 1414

in the state-of-the-art backbone networks. Given that the 1415

training of deep learning algorithms is generally a stochastic 1416

process, there is a need to assess these reported improve- 1417

ments with a more critical view and with robust statistical 1418

tests. 1419
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TABLE 7. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the APTOS2019 data set with the label 0 incorrectly classified as 1 by all
models.

TABLE 8. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the ISIC2020 data set with the label 0 correctly classified as 0 by all
models.

TABLE 9. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the ISIC2020 data set with the label 1 correctly classified as 1 by all
models.
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TABLE 10. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the ISIC2020 data set with the label 0 incorrectly classified as 1 by all
models.

TABLE 11. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the ISIC2020 data set with the label 1 incorrectly classified as 0 by all
models.

TABLE 12. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the MIMIC-CXR data set with the label 0 correctly classified as 0 by all
models.
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TABLE 13. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the MIMIC-CXR data set with the label 1 correctly classified as 1 by all
models.

TABLE 14. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the MIMIC-CXR data set with the label 0 incorrectly classified as 1 by all
models.

TABLE 15. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the MIMIC-CXR data set with the label 1 incorrectly classified as 0 by all
models.
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FIGURE 9. Predictive performance (i.e., accuracy) results of the different
models on the MIMIC-CXR data set, using different percentages of
training data.

2) MODEL COMPLEXITY1420

The integration of attention mechanisms increases the1421

number of parameters of the deep learning models, thus1422

increasing their complexity. This information allows us to1423

conclude that, at least for computer vision applications, it is1424

not necessarily true that the use of attention mechanisms1425

contributes to the decrease of model complexity. While this1426

may be true in several natural language processing appli-1427

cations, it is not correct to generalize such a rule to other1428

types of applications. On the other hand, since these attention1429

mechanisms often rely on simple operations (e.g., matrix1430

multiplications), such as convolutions, we acknowledge that1431

their use may reduce the training time of deep learning1432

algorithms (similarly to what happened when the community1433

started using CNNs). This aspect, though, was not objec-1434

tively assessed in our experiments. However, since they1435

are particularly efficient at modeling long-range dependen-1436

cies (e.g., Transformer-based architectures), we expect these1437

mechanisms to keep increasing their popularity and, hence,1438

become widely used in medical image applications. Besides,1439

Cordonnier et al. [219] reported that these mechanisms may1440

operate similarly to CNNs. Another question arises from1441

these results: are these attention-based algorithms allegedly1442

performing well because of the inner-functioning of their1443

attention mechanisms themselves or just because we are1444

increasing the number of model parameters? While one may1445

report that this issue is nonsense, we point out that some1446

Transformer-based architectures have a considerably high1447

number of parameters [79].1448

3) POST-MODEL INTERPRETABILITY1449

Although there are already several works that criticize the1450

subjectivity of post-hoc saliency maps [220], [221], [222],1451

[223], [224], [225], it is still common to use these methods to1452

justify improvements related to the degree of interpretability1453

of models. In this sense, when analyzing the results obtained 1454

with the DenseNet-121 and ResNet-50 models, we would 1455

expect that, with the increase in complexity of the attention 1456

mechanism, the distribution of the important pixels around 1457

the image would also be more focused (i.e., would have less 1458

variance). However, that does not seem to happen in our 1459

use cases. Interestingly, besides the inherent properties of 1460

the data and the task (i.e., images of the retina are different 1461

from skin images and chest X-ray images), the results dras- 1462

tically change when we use a different backbone. In general, 1463

ResNet-based models attain less noisy DeepLIFT and LRP 1464

saliency maps, with some exceptions in the ISIC2020 data 1465

set (e.g., Table 11). On the other hand, the LRP saliency 1466

maps obtained for the DeiT seem to highlight somewhat 1467

clear regions of the images. Besides, it is also important 1468

to remind the reader that these frameworks allow us to 1469

generate explanations even for the cases where the model 1470

miss-classifies. We also stress that one of the limitations 1471

of such analysis is that there does not exist an objective 1472

ground truth of what a high-quality visual explanation is. 1473

Therefore, it is not trivial, in computer vision tasks such as 1474

this, to conclude with complete confidence that, even for the 1475

cases where the model succeeds, it learned the right corre- 1476

lations. Hence, can we believe the narrative that attention 1477

mechanisms are learning the most relevant features of the 1478

image? Or is this type of analysis a result of luck in most 1479

cases? Truth is, our results still suggest that there is a high 1480

degree of subjectivity (i.e., the interpretation of these saliency 1481

maps deeply depends on the human that is interpreting them) 1482

and that there is no apparent correlation between the use 1483

of attention mechanisms and the visual aspect of the attri- 1484

butions. Besides, we stress that these visualizations shown 1485

in the literature depend on several parameters (e.g., type of 1486

color map, overlay parameter). Moreover, the method we 1487

use to generate such visualizations may often change what 1488

we expect users to observe. This is also related to another 1489

open challenge in post-hoc explanation methods that is the 1490

sign of the attributions. What should we expect? Positive 1491

attributions for the positive class and negative attributions 1492

for the negative class, or the other way around? Should we 1493

always normalize the sign of the attributions so it is always 1494

positive? This motivates our statement on the need for more 1495

objective methods to assess the degree of interpretability of 1496

models. 1497

V. CONCLUSION AND FUTURE CHALLENGES 1498

This section summarizes the main conclusions of this sur- 1499

vey and points to future directions toward the study of 1500

attention-based algorithms for medical applications. 1501

A. CONCLUSION 1502

This survey presented an exhaustive overview of the use of 1503

attention mechanisms for medical applications and provided 1504

an experimental study on medical image classification that 1505

approached three different use cases. We found that back- 1506

bone models can attain equivalent predictive performances to 1507
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Transformer-based architectures with equivalent model com-1508

plexity (i.e., number of parameters). Moreover, when using a1509

post-hoc framework to visually assess what type of features1510

these models can extract, we can conclude that there is still1511

a high degree of subjectivity in such analysis. The results1512

are very noisy, even for the cases of attention mechanisms,1513

which is counter-intuitive (i.e., with attention mechanisms,1514

these saliency maps should have less noise). The commu-1515

nity is moving toward using attention mechanisms (specially1516

Transformer-based ones) and arguing that these frameworks1517

increase the quality, transparency, and interpretability of deep1518

learning architectures. However, we state that this is not1519

true and that there are several open challenges one needs to1520

address to achieve this.1521

B. FUTURE CHALLENGES1522

1) ATTENTION MECHANISMS: PAST OR FUTURE?1523

The research on attention-based models is in constant evolu-1524

tion and requires a validation and maturation step. Besides,1525

as these models keep rising in popularity and keep convinc-1526

ing the community of their benefits, we acknowledge that1527

they will appear as a common block in future architectures.1528

However, the scientific community must keep in mind that1529

high-stake decision areas (e.g., finance, healthcare, justice)1530

require algorithms to be fair and transparent [224]. Therefore,1531

even if attention mechanisms are pushing deep learning algo-1532

rithms towards the limits of their predictive power, we must1533

start thinking about creating interpretable frameworks that1534

allow us to audit and assess these algorithms concerning the1535

specific conditions of their domains (i.e., in the case of this1536

work, healthcare).1537

2) DESIGN AND INTEGRATION OF ATTENTION1538

MECHANISMS1539

A potential disadvantage of the investment in attention mech-1540

anisms is related to the design of novel strategies of atten-1541

tion and their integration into well-studied backbone models.1542

Several works on attention often rely on a specific backbone1543

architecture for their experiments. Besides, if we look at1544

the topographies of these deep learning algorithms, it is not1545

always clear for the users where they should place these1546

modules, and why it makes sense to put them in a specific1547

place. Once again, another question arises: are these attention1548

modules dependent on the backbone into which they are inte-1549

grated to? Can we consider that the reported improvements1550

related to the predictive performance of deep learning models1551

are solely due to the addition of an attention module? Can we1552

come up with an objective strategy that guides future users1553

in building and integrating attention mechanisms into their1554

models?1555

3) THE RISE OF TRANSFORMERS1556

Apart from the current deep algorithms with attention mech-1557

anisms, it is crucial to talk about Transformer-based archi-1558

tectures. The attentive reader might have noticed that most1559

of the recent approaches to the use of attention-based models1560

in medical applications rely on Transformer-based modules. 1561

While there is hype on the use of these structures, it is not 1562

clear whether they are more interpretable or not, or if their 1563

generalization power is superior to the other deep models. 1564

4) INTERPRETABILITY IS THE PATH TO BETTER ALGORITHMS 1565

Even if we acknowledge that the Transformer-based algo- 1566

rithms are provoking a shift in the paradigm, it is not clear 1567

that they are improving the transparency of algorithms. For 1568

instance, in [79], the authors show that when training a DeiT 1569

using knowledge distillation techniques, the Transformer 1570

ends up learning better when the teacher model is a CNN. 1571

Hence, if the Transformer is learning with a non-interpretable 1572

model by design, how can we trust that the Transformer 1573

is inherently interpretable? On the other hand, given the 1574

capacity of these attention-based models to learn long-range 1575

dependencies, we must create objective techniques to assess 1576

the quality of the features learned by these frameworks, 1577

while moving towards the design of intrinsically interpretable 1578

attention-based architectures. Even if we intend to keep 1579

using visual saliency maps to explain our models, in a high 1580

stake decision field such as healthcare, we must achieve a 1581

clear standard, validated by the clinical community, of what 1582

these maps should look like and what is their effective 1583

meaning. 1584
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