IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 8 August 2022, accepted 9 September 2022, date of publication 14 September 2022,
date of current version 23 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3206449

== survey

A Survey on Attention Mechanisms for
Medical Applications: Are We Moving
Toward Better Algorithms?

TIAGO GONCALVES", (Member, IEEE), ISABEL RIO-TORTO “, LUIS F. TEIXEIRA", (Member, IEEE),
AND JAIME S. CARDOSO “, (Senior Member, IEEE)

Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal
University of Porto, 4200-465 Porto, Portugal

Corresponding author: Tiago Gongalves (tiago.f.goncalves @inesctec.pt)

This work was supported in part by the project “Transparent Artificial Medical Intelligence (TAMI),” is co-financed by the European
Regional Fund (ERDF) through the Operational Program for Competitiveness and Internationalization-COMPETE2020, the North
Portugal Regional Operational Program-NORTE 2020, under Grant NORTE-01-0247-FEDER 045905; and in part by the Portuguese

Foundation for Science and Technology (FCT) through the CMU-Portugal International Partnership, the Ph.D. under Grant
2020.06434.BD and Grant 2020.07034.BD, and the project LA/P/0063/2020.

ABSTRACT The increasing popularity of attention mechanisms in deep learning algorithms for computer
vision and natural language processing made these models attractive to other research domains. In healthcare,
there is a strong need for tools that may improve the routines of the clinicians and the patients. Naturally, the
use of attention-based algorithms for medical applications occurred smoothly. However, being healthcare a
domain that depends on high-stake decisions, the scientific community must ponder if these high-performing
algorithms fit the needs of medical applications. With this motto, this paper extensively reviews the
use of attention mechanisms in machine learning methods (including Transformers) for several medical
applications based on the types of tasks that may integrate several works pipelines of the medical domain.
This work distinguishes itself from its predecessors by proposing a critical analysis of the claims and
potentialities of attention mechanisms presented in the literature through an experimental case study on
medical image classification with three different use cases. These experiments focus on the integrating
process of attention mechanisms into established deep learning architectures, the analysis of their predictive
power, and a visual assessment of their saliency maps generated by post-hoc explanation methods. This
paper concludes with a critical analysis of the claims and potentialities presented in the literature about
attention mechanisms and proposes future research lines in medical applications that may benefit from these
frameworks.

INDEX TERMS Artificial intelligence, attention mechanisms, computer vision, deep learning, medical
applications, medical image analysis, transformers.

I. INTRODUCTION from biological vision systems, which appear to employ

The concept of attention is not new and has been part of
multidisciplinary debates across psychology, physiology, and
neuroscience [1]. The inspiration behind the translation of
this concept into artificial intelligence (AI) algorithms comes
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a serial computational strategy when inspecting complex
scenes [2]. Historically, the pursuit of an attention mechanism
seems to be deeply related to the problem of visual search,
where the main objective may be to find a small object in
a disorderly environment (e.g., a pen on a desk). A possible
solution to this problem is to use images with high resolution
and wide field-of-view. However, this results in very high
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dimensional inputs [3]. Hence, it was essential to devise a
strategy capable of selecting the most important parts of
the input, deciding where to look next during the process-
ing pipeline, and managing limited computational resources.
These aspects motivated the study of selective visual atten-
tion, which deals with the computational complexity of
computer vision tasks and often requires several basic compo-
nents, such as the selection of a region of interest in the image
and the selection of the dimension of features and values
of interest [4]. Besides, theoretically, such mechanisms have
the potential to guide the research into focusing more on
sparse local models [5]. Nevertheless, the scientific commu-
nity proposed several research lines that certainly influenced
the modern methodologies of attention-based mechanisms
for deep learning. Bandera er al. [6] and Minut et al. [3] pro-
posed reinforcement learning policies to regularize the train-
ing of computer vision systems in the task of target recog-
nition, Koch and Ullman [1] and Tsotsos et al. [4] proposed
a set of rules that promote visual attention via selective
tuning and shifts in the processing focus [1] during the
analysis of a visual scene, and Itti and Koch [2] addressed
this challenge using a saliency map based search mechanism.
Recently, the increase of available computational power and
the democratized access to big data allowed the resurgence of
deep learning algorithms and their applications [7], [8]. With
this paradigm shift, current methods now seek to integrate
learnable attention mechanisms on an end-to-end basis [9],
with interesting impacts in diverse applications [10].

As the available literature on attention mechanisms con-
tinues to grow, the first reviews and surveys on the topic
were published and gained visibility. Hence, it is relevant
to introduce the reader to the context of such studies and
their content. Besides, this overview helps the reader gain
intuition about the work developed in this research field while
understanding the research questions that this survey aims
to answer. Borji and Itti [11] reviewed several models of
visual attention based on non-deep learning methods and
presented a taxonomy indicating their approaches an capa-
bilities. Cho et al. [12] presented an early study on the use
of attention mechanisms in convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) with a spe-
cial focus on soft-attention for applications such as neu-
ral machine translation, image captioning, video description
generation or end-to-end neural speech recognition. Wang
and Tax [13] published a survey that explored the use of
attention mechanisms in RNNs for sequence-to-sequence
challenges. Chaudhari er al. [14] presented a survey of atten-
tion mechanisms for natural language processing, wherein
they proposed a taxonomy and reviewed several neural net-
work architectures in which attention has been incorporated
while discussing applications in which modeling attention
has shown significant impact. Yang [15] performed a brief
overview about attention mechanisms for computer vision
and introduced a preliminary taxonomy. Lindsay [16] pub-
lished a review on attention mechanisms that provides intu-
ition about the definition of attention in the neuroscience and
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psychology literature and covers several use cases of attention
in machine learning, indicating their biological counterparts
where they exist.

In 2017, Vaswani et al. [17] proposed the Transformer,
a deep neural network architecture composed solely of
attention operations that discarded recurrence and convo-
lutions entirely. In the original paper, the authors applied
this architecture to the task of neural machine translation
and explored the use of attention operations as a means
of reducing computational complexity when compared to
recurrent or convolution operations. The establishment of
a similar architecture for computer vision occurred almost
naturally, when Dosovitskiy et al. [18] proposed the Vision
Transformer architecture. Han et al. was one of the pioneers
in analyzing the advantages and disadvantages associated
with the use of Transformer-based architectures in computer
vision with a particular interest in the self-attention mecha-
nism [19]. Khan et al. [20] also provided a comprehensive
overview of Transformer-based models from the perspective
of their application and architectural design. Guo et al. [21]
published a comprehensive and systematic review of attention
mechanisms for computer vision and created a taxonomy
that categorizes attention mechanisms according to their data
domain. Xu et al. [22] revisited the Transformer architec-
tures with particular emphasis on low-level vision and gen-
eration. Recently, Shamshad ef al. [23] explored the use of
Transformer-based architectures for medical image analysis
and published a pioneering review that provides insight on
the applications of these algorithms in several dimensions
of the clinical daily routine. Almost all of the previous
papers focus on the current state-of-the-art, performing a
comparative analysis based solely on published results, thus,
anticipating future and open challenges from a theoretical
perspective.

In this survey, we perform an extensive review of
attention mechanisms for medical applications (including
Transformer-based architectures) with a theoretical discus-
sion and a strong focus on the methodologies and their
applications. In other works of the same genre, the authors
usually focus on enumerating state-of-the-art strategies with
their reported results. Besides, to our knowledge, this is the
first work that approaches the topic of attention mechanisms
from a broad perspective since we establish the connection
between the natural language processing and computer vision
domains, given the multi-modality property of medical data.
Also, we complement this discussion with the Transformer-
based architectures, as they currently are the most popular
attention-based models. Hence, we approach this topic with
a critical view and ask the following research questions:

1) Will attention mechanisms automatically improve the
predictive power of deep learning algorithms for med-
ical image applications?

2) What is the impact of integrating attention mechanisms
on model complexity?

3) Can we improve the degree of interpretability of deep
learning models solely through attention mechanisms?
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4) How practical is it to design and build attention mech-

anisms for deep learning applications?
To answer these, we develop an experimental protocol

with three case studies on medical image classification,
using established deep learning architectures with and with-
out state-of-the-art attention blocks and a Transformer-based
model. We address the open challenges of interpretability and
transparency with the help of post-hoc explanation methods
and perform a visual analysis of the impact of different atten-
tion mechanisms in these outputs. We consider this survey
a timely opportunity for the community to start questioning
the extent of several claims made in the literature. In addition,
our experimental protocol works as a reliable proxy for this
analysis.

The main contributions of this paper are:

1) Anextensive review of the use of attention mechanisms
in machine learning methods (including Transformers)
for several medical applications based on the types of
tasks that can integrate several work pipelines of the
medical domain: medical image classification, med-
ical image segmentation, medical report understand-
ing, and other tasks (medical image detection, medical
image reconstruction, medical image retrieval, medical
signal processing, and physiology and pharmaceutical
research);

2) An experimental case study on medical image classifi-
cation with three different use cases that focus on the
integration of attention mechanisms into established
deep learning architectures, the analysis of their pre-
dictive power, and a visual assessment of their saliency
maps generated by post-hoc explanation methods;

3) A critical analysis of the claims and potentialities of
attention mechanisms presented in the literature;

4) A discussion on the future challenges of medical
applications and how they may benefit from attention

mechanisms.
Besides the Introduction, the remainder of this article is

organized as follows: Background introduces a historical
overview and the fundamental concepts of attention mech-
anisms in machine learning, Literature Review presents an
exhaustive review of the integration of attention mechanisms
in algorithms for medical applications, Case Studies details
the experimental work that accompanies this paper, and Con-
clusions and Future Challenges summarizes the main conclu-
sions of this survey and points to future directions towards the
study of attention-based algorithms for medical applications.
The code is publicly available in a GitHub repository. '

Il. BACKGROUND
This section presents a historical overview and the funda-
mental concepts regarding attention mechanisms in machine
learning.

Although there is no clear nor unified concept for attention,
we can refer to it as the ability to flexibly manage limited

1 https://github.com/TiagoFilipeSousaGoncalves/survey-attention-
medical-imaging
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computational resources. This research topic spans several
domains of knowledge and has been studied in conjunction
with many other topics in neuroscience and psychology [24],
including awareness, vigilance, saliency, executive control,
learning, and, more recently, artificial intelligence. There-
fore, we have different ways of perceiving the properties of
attention mechanisms at biological, psychological or compu-
tational levels [16]. From the perspective of the domains of
arousal, alertness or vigilance, attention could be described
as a general measure of alertness or the ability to engage with
the surroundings [25]. From the perspective of sensorial stim-
uli, attention is often deployed as an alert subject to specific
sensory input, allowing tight control over both the stimuli and
the locus of attention (e.g., selective audio attention, visual
attention) [26], [27], [28]. From the perspective of execu-
tive control [29], the assumption is that there are multiple
simultaneous competing tasks and that a central controller
is needed to decide which to engage in and when, hence,
attention can be thought of as the output of executive control,
since the executive control system must select the targets of
attention and communicate that to the systems responsible
for implementing it [16]. From the perspective of memory,
attention is understood as the ability of the brain to select the
subset of information that is well-matched to the needs of the
memory system, thus being a choice regarding the deploy-
ment of limited resources [16], [30]. From the perspective
of artificial intelligence, the first successful implementations
were accomplished with encoder-decoder structures in deep
neural network architectures, where the main goal is to learn
the best attention weights that connect the encoder to the
decoder [12].

In the context of deep learning, RNNs were the pioneering
attention-based structures. This is mainly due to their ability
to learn and process sequential data (e.g., data with a tem-
poral component), which makes RNNs a class of machines
with dynamic states (i.e., their state depends on both the
input to the system and the current state), such that a signal
received at a given moment can alter the behaviour of the
network at a much later point in time [31]. These properties
allow RNNs to process variable-length structures without
further modification, a property that has been extensively
explored in several cognitive problems such as speech recog-
nition [32], [33], text generation [34], handwriting genera-
tion [35] and machine translation [36]. The work described
in [37] is perhaps the most classic example of the design
and implementation of computational attention mechanisms
with RNNs. In the original paper, the authors focused on the
task of neural machine translation and proposed an RNN-
based encoder-decoder architecture in which the task of the
encoder is to compress the input data (in this case, an English
sentence), while the task of the decoder is to receive and
decode this data to achieve a meaningful translation (in
this case, a French sentence). The principal motivation for
introducing an attention mechanism in this learning pipeline
is related to the difficulty of achieving a perfect alignment
between the input and output sequences, which is an almost
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impossible goal in most cases. The role of the attention
mechanism is to learn weights that make the decoder focus
on the relevant parts of the input sequences to produce mean-
ingful outputs. At the time of publication, this methodology
improved the state-of-the-art and paved the way for new
research questions and exploration of novel attention-based
frameworks.

The study of attention mechanisms comprises two main
research lines: language, text, and speech; and computer
vision. Since the clinical practice (the subject of this sur-
vey) involves multiple modalities of data, we examine these
two main dimensions to help the reader become familiar
with the various nomenclatures, taxonomies, and practices.
We believe this introductory approach is important to under-
stand the context of the discussion presented in the following
sections.

A. ATTENTION MECHANISMS FOR LANGUAGE,
TEXT, AND SPEECH
An insightful and comprehensive taxonomy for categorising
attention mechanisms for language, text, and speech has
been proposed by Chaudhari ef al. [14]. The authors relate
most of the concepts to the encoder-decoder model. Hence,
for better understanding, we need to define the following:
input sequences, the input vectors of the model (see Fig. 1’s
“Input Sequence’); output sequences, the output vectors
of the model (see Fig. 1’s “Output Sequence’); candidate
states, the hidden states of the encoder (see Fig. 1’s “Encoder
Vector’); query states, the hidden states of the decoder (see
Fig. 1’s “Decoder Vector™).

Following this rationale, Chaudhari et al. [14] organise the
different types of attention mechanisms into different (non-
mutually exclusive) categories:

o Number of abstraction levels: This category takes
into account the number of representation/feature levels
where the model will learn the attention weights. At this
level, we may consider the following types of atten-
tion: single-level attention, when the attention weights
are computed only for the original input sequence; and
multi-level attention, when we apply the attention mech-
anism on multiple levels of abstraction of the input
sequence, usually in a sequential manner.

« Number of positions: This category takes into account
the number of positions of the input sequence where
the attention weights are learned. At this level, we may
consider the following types of attention: soft attention,
which consists of a weighted average of all the hidden
states of the input sequence (i.e., the same as candidate
states) to build the context vector (see Fig. 1’s “Context
Vector’’); global attention, which is the term used in the
machine translation field to describe soft attention; hard
attention, which consists of a stochastic sampling of the
hidden states to build the context vector; local attention,
also part of the machine translation field, consists of
the detection of an attention point and on the use of
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FIGURE 1. Block diagram of the general attention mechanism for
language, text and speech, according to [14].

a window around that point to compute local attention
weights.

o Number of representations: This category consid-
ers the number of different feature representations of
the input sequence used in the learning task. At this
level, we can consider the following types of atten-
tion: single-representational attention, which is the
most common and consists in learning the attention
weights using only a single feature representation; multi-
representational attention, which consists in learning the
attention weights using multiple representations (of the
same input sequence) and creating a context vector that
is the result of a weighted combination of these mul-
tiple representations and their attention weights; multi-
dimensional attention, which consists in computing the
attention weights along several dimensions of the repre-
sentation of the input sequence, which will result in the
computation of the relevance of each dimension to the
learning task.

« Number of sequences: This category takes into account
the number of input and output sequences. At this level,
we may consider the following types of attention: dis-
tinctive attention, when the candidate and query states
belong to two different input and output sequences
respectively; co-attention, when we consider multiple
input sequences at the same time and the main goal is to
jointly learn their attention weights; self-attention, when
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the query and candidate states belong to the same input

sequence.
An analysis of the literature shows that, until very recently,

most of the works in attention mechanisms for language,
text, and speech derived from the framework proposed by
Bahdanau ez al. [37]. In [38], the authors trained a long
short-term memory network (LSTM) on the task of neural
machine translation (i.e., English to German) and presented
an explicit comparative study of local and global attention
mechanisms. In [39], the authors considered speech recogni-
tion as a sequence generation task (i.e., speech to transcrip-
tion) and developed an attention mechanism with convolu-
tional features to refine the quality of the output sequences.
On the other hand, oppositely to this generalized use of
RNN-based architectures, in [40], the authors proposed a
fully-convolutional network (FCN) with an attention block
that uses the dot-product operation trained to generate text
from speech. Lately, the successful introduction of the Trans-
former architecture [17], based solely on attention mecha-
nisms, started a new paradigm for their study. Recent studies
invest their efforts in the computational or design improve-
ments to the baseline Transformer architecture [41], [42],
[43], or in the proposal of novel Transformer-based architec-
tures [44], [45], [46], [47], [48]. On the other hand, opposite
to the trend on the increase of model complexity, Merity [49]
revisited the fundamentals of LSTMs and proposed a single-
head attention that could represent an alternative to the use
of Transformer-based architectures.

B. ATTENTION MECHANISMS FOR COMPUTER VISION
Attention mechanisms for computer vision got their inspira-
tion from the human visual system, which can detect whether
certain features of an image are relevant or not [50]. In con-
trast to the literature on attention mechanisms for language,
text, and speech, there are already a number of interesting
review articles on this topic [15], [19], [20], [21], [22]. How-
ever, only the work of Guo et al. [21] has presented and dis-
cussed a complete taxonomy that organizes the different types
of attention mechanisms for computer vision into different
categories:

o Channel attention: This category follows the assump-
tion that, in deep CNNs, different channels in different
feature maps usually represent different objects [51].
Therefore, the job of channel attention is to calibrate
the weight of each channel adaptively. This mechanism
acts as an object selector, thus determining what to pay
attention to.

« Spatial attention: This category is analogous to channel
attention. Here, the job of the attention mechanism is
to calibrate the weight of each region of the image
adaptively. This mechanism acts as an adaptive spatial
region selection process, thus determining where to pay
attention.

« Temporal attention: This category considers that data
has a temporal dimension, therefore, in the case of
computer vision tasks, this type of attention mechanism
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is often used for video processing. The job of tem-
poral attention is to calibrate the weight of each time
frame adaptively. This mechanism acts as a dynamic
time selection process, thus determining when to pay
attention.

o Branch attention: This category considers multi-
branched deep learning architectures. The job of branch
attention is to calibrate the weight of each branch adap-
tively. This mechanism acts as a dynamic branch selec-
tion process, thus determining which to pay attention to.

o Channel and spatial attention: This category com-
bines the advantages of both channel and spatial atten-
tion. This mechanism acts as a dynamic spatial region
and object selection process, thus determining what and
where to pay attention.

« Spatial and temporal attention: This category com-
bines the advantages of both spatial and temporal atten-
tion. This mechanism acts as a dynamic spatial region
and time-frame selection process, thus determining
where and when to pay attention.

The application of attention mechanisms in computer
vision is almost contemporaneous with the first proposals
for attention mechanisms in the language, text, and speech
domains. Below we present several representative examples
from each category.

With respect to channel attention, Hu et al. [52] pro-
posed the squeeze-and-excitation block. This module adap-
tively recalibrates channel-wise feature responses by explic-
itly modelling dependencies between channels. This strength-
ens the representational power of CNNs by improving the
quality of spatial encodings across the feature hierarchy.
These properties have been explored as fundamental com-
ponents of attention mechanisms in [53] and [54]. Still on
the scope of channel attention, a different research line,
related to the self-attention mechanism, was further explored
in [55]. In this work, the authors proposed atfention aug-
mentation mechanisms combining both convolutions and
self-attention by concatenating the convolutional feature
maps with a set of feature maps generated by self-attention.
This approach showed improvements in image classification
and object detection while maintaining the number of param-
eters. In [56], the authors addressed the topic of one-shot
learning and proposed a neural network architecture that
uses the semantic representation (i.e., the embedding) of
the label to obtain attention maps that are used to generate
image features. They also developed a multiple-attention
scheme to extract meaningful information from the input
images and used an auxiliary training set to learn the attention
weights.

Concerning spatial attention, Mnih et al. [57] designed a
novel RNN capable of extracting information from an image
or video by adaptively selecting a sequence of regions or
locations and only processing these regions at a high reso-
Iution. Hence, this method can contribute to a high degree
of translation invariance and the ability to process vari-
able input sizes. Dai et al. [58] developed the deformable
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convolution, which adds flexibility to the regular (spatial)
sampling grid of the standard convolution. The intuition
behind this approach is that CNNs with these modules extract
better features related to the objects of interest in the images
(with particular focus on non-rigid objects), thus increasing
their robustness to affine transformations. Wang et al. [59]
revisited the concept of non-local attention and designed the
non-local networks, which compute the response at a given
spatial location as a weighted sum of the features at all
positions in the features. Hu er al. [60] addressed the issue
of context exploitation in CNNs and proposed a framework
consisting of a pair of operators: the gather operator, which
aggregates contextual information across large neighbour-
hoods of each feature map, and the excite operator (inspired
by [52]), which redistributes the pooled information to local
features.

Regarding temporal attention, Xu et al. [61] have proposed
the attentive spatial-temporal pooling network architecture,
which operates on video sequences by learning a similar-
ity metric over the features extracted from recurrent and
convolutional layers, and computing the attention weights
on spatial (i.e., regions in each frame) and temporal (i.e.,
frames over sequences) levels. Similarly, Chen et al. [62]
developed an attention mechanism to optimise the similarity
learning among short-video snippets, and Zhang et al. [63]
proposed the self-and-collaborative attention network, which
also learns a similarity metric between feature representations
of video-pairs.

Regarding branch attention, Srivastava et al. [64] pro-
posed the concept of highway networks which consists of
deep neural networks with an LSTM-inspired attention gate
that allows for computation paths along which information
can flow across many layers (i.e., information highways).
This work can be considered the precursor of this concept of
branch attention. Later, Li et al. [65] designed selective kernel
networks, which contain multiple CNN branches with differ-
ent kernel sizes that are fused using an attention mechanism,
guided by the information in these branches. Zhang et al. [66]
presented a deep neural architecture that contains several
replicated branches (i.e., the cardinal branches) that contain
more replicated branches (i.e., the split branches). In this
work, the information fusion is performed with an attention
mechanism inspired by [52]. Chen et al. [67] proposed the
dynamic convolution, which employs multiple parallel con-
volution kernels dynamically and aggregates this information
through a non-linear attention mechanism.

With respect to channel and spatial attention,
Woo et al. [68] have designed a convolutional block attention
module that contains a channel attention module followed
by a spatial attention module. According to the authors,
this block can be easily integrated into any architecture and
enables the regression of finer features for object detection.
Following this research line, Zhao et al. [69] have proposed
the point-wise spatial attention network for the task of image
segmentation. This network processes contextual information
from all positions in the feature map and uses a self-adaptive
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attention mechanism to connect all of them. Using generative
adversarial networks (GANS), Zhang et al. [70] explored a
self-attention mechanism to enable both the generator and
the discriminator to efficiently model relationships between
widely separated spatial regions.

In terms of spatial and temporal attention, Du et al. [71]
introduced the recurrent spatial-temporal attention network
in which they used an end-to-end LSTM-based network with
a spatio-temporal module to process video data, and devel-
oped an attention-based mechanism to fuse this information.
Song et al. [72] used RNNs and LSTMs together to process
video data and added spatial and temporal attention modules,
whose information is later fused. Gao et al. [73] addressed
the problem of visual captioning with hierarchical LSTM
models using spatio-temporal attention to select specific
regions or frames to predict the associated words and with
adaptive attention to model the importance of visual informa-
tion or the language contextual information. Yan et al. [74]
have also addressed the problem of visual captioning with an
architecture based on a CNN-encoder and an LSTM-decoder
with spatio-temporal attention to extract spatial and temporal
features in a video and guide the decoder to automatically
select the most significant regions in the most relevant tem-
poral segments for word prediction.

In addition, several works focus on multi-modal data, thus
mixing both the computer vision and the language, text, and
speech domains. In [50], the authors revisited the concepts
of hard and soft attention. They implemented an architecture
consisting of a convolutional block to extract image features
and an LSTM network with attention to generate the image
description (i.e., automatic image captioning).

Although CNN-based architectures had achieved high per-
formance, the transition to Transformer-based architectures
occurred almost naturally. Wu et al. [75] discussed three
open challenges that motivated the natural implementation of
Transformer-based architectures for computer vision tasks:
convolutions uniformly process all image patches regard-
less of their importance, which can lead to spatial ineffi-
ciency (e.g., image classification models should prioritize
foreground over background); not all images have all con-
cepts, therefore, applying high-level filters to all images
could be computationally inefficient (e.g., features related
to an image of a person may not be present in an image
of a flower); and, the convolution operation is not good
at establishing relationships between spatially-distant con-
cepts, which is an essential property in computer vision.
For this reason, Dosovitskiy ef al. [18] have proposed the
Vision Transformer architecture. Analogously to the original
Transformer, to work with a Vision Transformer, one needs
to split an image into patches and provide the sequence of
linear embeddings of these patches as the input. Contempo-
raneously, Wu et al. [75] proposed a similar architecture that
aims to encode semantic concepts in a smaller number of
tokens and establish a relationship between spatially-distant
concepts through an attention mechanism in this token space.
Several modifications of the baseline architecture and their

VOLUME 10, 2022



T. Gongalves et al.: Survey on Attention Mechanisms for Medical Applications: Are We Moving Toward Better Algorithms?

IEEE Access

application to different tasks have already been reported [76],
(771, [781, [79].

IIl. LITERATURE REVIEW

This section provides a comprehensive review of the inte-
gration of attention mechanisms into algorithms for medical
applications. For the sake of clarity, we structure this section
into different types of tasks that can integrate different work-
flows of the medical domain: medical image classification,
medical image segmentation, medical report understanding,
and other tasks (medical image detection, medical image
reconstruction, medical image retrieval, medical signal pro-
cessing, and physiological and pharmaceutical research). The
work presented in this section results from the analysis of
existing surveys (referenced in the Introduction) and a search
in Google Scholar? using the terms “attention mechanism”,
“deep learning”, and ‘“medical”.

A. MEDICAL IMAGE CLASSIFICATION
Below, we group the works of the most common approaches
in recent works.

1) BREAST LESION CLASSIFICATION

In a multi-database and multi-class classification (i.e.,
benign, malignant, and normal) approach for breast lesions
in ultrasound images, Gheflati and Rivaz [80] studied the
impact of using data augmentation, and transfer learning
on Transformer- and CNN-based architectures, and reported
similar, and sometimes improved, results. In a multiple
instance learning approach (MIL), Ilse et al. [81] proposed a
gated attention mechanism in deep neural networks for the
classification of histopathological images (the authors also
investigated the application of this methodology to colon
cancer).

2) COVID-19 CLASSIFICATION

In the task of Coronavirus disease (COVID-19) classification,
Han et al. [82] proposed a MIL algorithm for the automated
screening of COVID-19 from volumetric chest computed
tomography (CT) scans that employs an attention mechanism
in the pooling operation to select the instances that may be
meaningful for the final classification. Perera et al. [83] pro-
posed a lightweight Vision Transformer that uses ultrasound
images to discriminate between COVID-19, bacterial pneu-
monia and healthy specimens. Jiang and Lin [84] proposed
an architecture that combines two Transformer-based models
to classify chest X-ray images as COVID-19, pneumonia,
and healthy specimens. Liu and Yin [85] used X-ray image
data and applied a Transformer architecture with transfer
learning to train a model capable of discriminating between
normal and COVID-19 cases. Park et al. [86] explored the
potential of Vision Transformer architectures in a feder-
ated learning setting for the classification of COVID-19 in
chest X-ray images and reported that these architectures

2https://scholar. google.com/
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are suitable for collaborative learning in medical imaging.
Hsu et al. [87] approached chest CT scan data with an archi-
tecture that uses Transformer-based blocks to learn the con-
text of the CT slices, the information at the pixel level, and
the spatial-context features with the aid of a deep Wilcoxon
signed-rank test to determine the importance of each slice.
Zhang and Wen [88] proposed a framework for 3D CT
scans that consists of a U-Net [89] module to segment
the lungs and a Transformer-based module to extract fea-
tures and perform classification (i.e., COVID-19 diagnosis).
Mondal et al. [90] proposed a Vision Transformer with a
multi-stage transfer learning strategy that uses CT and X-ray
image modalities to discriminate between COVID-19, pneu-
monia, and healthy specimens. Gao et al. [91] tested a Vision
Transformer on 2D and 3D medical image data from CT
scans and reported improved results against common CNN
architectures for COVID-19 classification (i.e., COVID-19
against non-COVID-19). Similarly, Shome et al. [92] also
employed a Vision Transformer on 2D chest CT X-ray
images and tested its predictive performance in both binary
(i.e., COVID-19 against healthy specimens) and multi-class
(i.e., COVID-19 against bacterial pneumonia against healthy
specimens) settings, reporting improved results against com-
mon CNN architectures. Ambita et al. [93] used a Vision
Transformer to detect COVID-19 in CT scan images and
employed a data augmentation strategy that relied on the
generation of synthetic images with a self-attention-based
GAN. Park et al. [94] explored the use of a Vision Trans-
former architecture for COVID-19 classification that uses
low-level features generated using a backbone network. The
authors also performed several experiments using chest X-ray
databases from different institutions.

3) WHOLE SLIDE IMAGE CLASSIFICATION

Lu et al. [95] addressed the problem of glioma subtype clas-
sification (i.e., a multi-class task) in whole slide image (WSI)
data using a contrastive training framework that employs
a CNN backbone to learn relevant patch-level feature rep-
resentations, and a sparse-attention block to aggregate the
features of these multiple patches (i.e., multiple instances).
Chen et al. [96] employed a Transformer-CNN-based archi-
tecture to classify gastric histopathology WSIs in a binary
setting (i.e., normal against abnormal). Jiang et al. [97]
addressed the diagnosis of acute lymphocytic leukemia
through the classification of leukemic B-lymphoblast cells
(i.e., cancer cells) and B-lymphoid precursors (i.e., nor-
mal cells) with a Transformer-CNN ensemble, and a data
enhancement method that tackles the problem of class imbal-
ance. Zheng et al. [98] proposed a novel graph-based Vision
Transformer architecture to classify lung WSIs (i.e., adeno-
carcinoma, squamous cell carcinoma, and normal histology).

4) RETINAL DISEASE CLASSIFICATION

Bodapati ef al. [99] proposed an architecture for the auto-
matic diagnosis of diabetic retinopathy that uses multiple
pre-trained CNNs with spatial pooling to extract features
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from color fundus retinal images and integrates gated atten-
tion blocks to guide the model to focus more on lesion
portions of the retinal images while paying less attention to
the non-lesion regions. Yu et al. [100] addressed the task of
retinal disease classification using fundus image data with a
Vision Transformer trained under a MIL setting. Similarly,
in diabetic retinopathy classification, Sun et al. [101] pro-
posed a lesion-aware Transformer architecture that jointly
learns to detect the presence of diabetic retinopathy and
the location of lesion discovery, using an encoder-decoder
structure. Several authors have addressed the task of diabetic
retinopathy recognition in a multi-class setting (i.e., no dia-
betic retinopathy, mild non-proliferative diabetic retinopa-
thy, moderate diabetic retinopathy, severe non-proliferative
diabetic retinopathy, and proliferative diabetic retinopa-
thy) with a Vision Transformer architecture [102], [103].
Yang et al. [104] used a hybrid CNN-Transformer archi-
tecture to tackle ophthalmic image data in a multi-class
setting (i.e., normal, diabetes, glaucoma, cataract, age-
related macular degeneration, hypertension, myopia, and
other abnormalities) using different data pre-processing
strategies.

5) MISCELLANEOUS CLASSIFICATION TASKS

In 1lung cancer classification in screening CT,
Al-Shabi ef al. [105] have extended the study of non-local
attention and proposed an architecture that is initially trained
on simple examples and gradually grows to increase its ability
to handle the task at hand, as the classification task becomes
more difficult. Moranguinho et al. [106] applied this method-
ology for the classification of lung biopsy histopatholog-
ical images with respect to cancer classification and used
post-model interpretability algorithms to assess the regions
of interest for the predictions of their trained deep neural
network. He et al. [107] proposed a deep learning architecture
for depression recognition that combines a backbone CNN to
extract features, a local attention module that focuses on parts
of the input images, a global attention module to learn global
patterns from the entire input images, and a weighted spatial
pyramid pooling layer to learn the depression patterns after
the feature aggregation operation. Dai et al. [108] explored
the task of multi-modal and multi-class classification in head,
neck, and knee magnetic resonance imaging (MRI) data using
a hybrid CNN-Transformer model, where the CNN module
is used as a low-level feature extractor. Datta ef al. [109]
performed a comparative study of the effect of soft-attention
combined with different backbone architectures in skin can-
cer classification and reported several advantages against
conventional methodologies. Barhoumi et al. [110] proposed
a model that aggregates several feature maps extracted using
multiple Xception CNNs [111] and uses these features to
train a Vision Transformer for the intracranial hemorrhage
classification problem, using CT images. Liang and Gu [112]
added an attention mechanism to a backbone network based
on the ResNet [113] to aid the diagnosis of Alzheimer’s
disease in brain MRI data.
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FIGURE 2. U-Net architecture with attention blocks, as proposed in [123].
Please note that rectangles represent the feature maps of the encoder
and decoder, horizontal arrows represent the regular flow of information,
vertical elbow arrows represent the skip connections, and squares
represent the attention blocks.

B. MEDICAL IMAGE SEGMENTATION
Using well-known data sets related to different use cases
and working on top of [52], Roy et al. [114] verified that the
addition of a spatial-channel squeeze and excitation block
works as an attention mechanism in FCNs and improves
the quality of the segmentation maps. Interestingly, in most
recent papers, the authors approach the problem of medical
image segmentation using encoder-decoder structures that
generally comprise a CNN and a Transformer to extract
volumetric spatial feature maps, perform global feature mod-
eling and predict refined segmentation maps [115], [116],
[117], [118], although there are already some works that
replace the CNN-based modules at the encoder or decoder
levels and integrate other attention mechanisms to extract
features and model long-range dependencies [119]. More
recent methodologies on medical image segmentation are
taking advantage of a hybrid use of the Vision Transformer
and the U-Net with improved results regarding the quality of
segmentation maps [120], [121]. Wu et al. [122] proposed a
feature adaptive model that comprises a dual encoder with
CNN and Transformer branches to simultaneously capture
both local features and global context information. The U-Net
architecture [89] has high relevance in biomedical image
segmentation. The high flexibility of this network’s structure
allows the integration of several computing blocks, such as
attention mechanisms (see Fig. 2). Hence, as described below,
most authors employ a similar structure in their applications.
Below, we group the works of the most common
approaches in recent works.

1) BREAST LESION SEGMENTATION

Using breast ultrasound images, Vakanski et al. [124] inte-
grated an attention block into the well-known architec-
ture U-Net to learn semantic representations that prioritize
spatial regions for the task of breast tumor segmentation.
In breast tumor segmentation, using ultrasound imaging data,
Zhu et al. [125] developed a Transformer-based architecture
that incorporates prior information of the region of tumors
to obtain accurate segmentation. Following the most recent
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approaches of Transformer-based architectures for medical
image analysis, Liu et al. [126] proposed a U-Net-like model
that integrates an attention module to focus on the tumor
region and combines CNN and Transformer blocks to extract
and process features that may lead to improved segmentation
maps.

2) COMPUTATIONAL PATHOLOGY

Using microscopic images, Prangemeier et al. [127] pro-
posed an architecture based on a CNN-encoder and
Transformer-decoder for the classification and instance seg-
mentation of yeast cells. Using microscopy images of corneal
endothelial cells, Zhang et al. [128] revisited the problem
of cell segmentation with the proposal of the multi-branch
hybrid Transformer network, which follows the main struc-
ture of its predecessors (i.e., it contains both CNN and
Transformer modules) to extract and process local and spa-
tial features that may lead to refined segmentation maps.
Shao et al. [129] addressed MIL using a Transformer-based
architecture that explores morphological and spatial infor-
mation and considers the correlation between instances.
The authors tested their framework in different computa-
tional pathology problems. Using high-resolution images,
Nguyen et al. [130] performed a comparative analysis using
architectures based on CNN and Transformer modules
and reported improved results with the Transformer-based
approaches. In a similar approach, using hyperspectral image
data, Yun et al. [131] proposed an encoder-decoder architec-
ture with CNN and Transformer blocks to extract and model
spatial and spectral features, achieving competitive results
against other methodologies.

3) CARDIAC SEGMENTATION

Li et al. [132] addressed the task of cardiac image segmenta-
tion using MRI data from different domains with a generative
adversarial model with an attention loss, proposed to translate
the images from existing source domains, and a stack of
data augmentation techniques to simulate real-world trans-
formation to boost the segmentation performance for unseen
domains. Concurrently, Kong and Shadden [133] tackled
the same problem with a GAN with a cycle consistency
loss (i.e., CycleGAN [134]) to generate images in different
styles, exchanging the low-frequency features of images from
different domains, and using an architecture based on an
attention-gated U-Net that should learn to focus on cardiac
structures of varying shapes and sizes while suppressing
irrelevant regions. These strategies have been followed by
the community in other contexts as well [135]. In the task of
cardiac segmentation, using ultrasound images (i.e., echocar-
diography), Deng et al. [136] developed an architecture that
combines a CNN-based encoder-decoder to extract multi-
level features, a Transformer structure to fuse these fea-
tures, and a patch embedding layer created to reduce the
number of parameters of the embedding layer and the size
of the token sequence. Chen et al. [137] proposed a U-Net-
like architecture that studied the potential of several set-
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tings (e.g., Transformer as encoder, hybrid CNN-Transformer
as encoder) that reported increased performances for car-
diac segmentation (the authors also reported increased per-
formances on multi-organ segmentation). Huang et al. [138]
also proposed a Transformer-based model that tackles several
tasks: the alignment of features, the enhancement of the
long-range dependencies and local context, and the mod-
eling of the long-range dependencies and local context of
multi-scale features. They experimented with this architec-
ture on cardiac segmentation databases (also on multi-organ
segmentation).

4) MULTI-TASK SEGMENTATION

Oktay et al. [123] addressed the task of multi-organ seg-
mentation (i.e., liver, pancreas, spleen) and worked on top
of the U-Net architecture by integrating attention modules
in the skip connections to promote the learning of relevant
features while suppressing feature activations in irrelevant
regions. Yao et al. [139] proposed a U-Net-based architecture
with deep feature concatenation and an attention mecha-
nism branched into several attention gates for the task of
scleral blood vessel segmentation. Following this methodol-
ogy, Chang et al. [140] added a Transformer module to the
encoder block of the baseline model and reported improved
results on multi-organ segmentation tasks. Using CT images,
Xie et al. [141] proposed a framework that connects a CNN
and a Transformer to extract both feature representations and
model the long-range dependency on these feature maps.
This model also employs a self-attention mechanism that
focuses on specific positions of the image, thus reducing
the computational complexity. Similarly, for kidney segmen-
tation using CT images, Shen et al. [142] also proposed an
encoder-decoder architecture that leverages the interaction
of CNN and Transformer modules to learn multi-scale fea-
tures to achieve improved segmentation results. Following
this work, Zhang et al. [143] developed an architecture for
multi-organ segmentation that runs a CNN-based encoder
and Transformer-based segmentation network in parallel and
fuses the features from these two branches to jointly make
predictions. Tang et al. [144] proposed a U-Net shaped archi-
tecture with a Transformer module for multi-organ segmen-
tation with 3D images and employs a specific pre-training
strategy with contrastive learning, masked volume inpaint-
ing, and 3D rotation prediction. Using images from differ-
ent modalities (i.e., MRI and CT) and organs (i.e., brain
cortical plate, hippocampus, pancreas), Karimi et al. [145]
proposed an architecture based entirely on Transformers that
uses self-attention between neighboring image patches, with-
out requiring any convolution operations. Cao et al. [146]
also proposed a U-Net architecture composed solely of
Transformer-based modules for multi-organ segmentation
that uses skip-connections for local-global semantic feature
learning. On colonoscopy images, Sang et al. [147] proposed
an architecture that takes advantage of a ResNeSt back-
bone [66] connected to the coupled U-Nets [148] architecture
and several attention gates to combine multi-level features
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and yield accurate polyp segmentation. In a multi-task seg-
mentation approach, Zhang et al. [149] developed a method
that seeks to integrate multi-scale attention and CNN feature
extraction using a pyramidal network architecture, by work-
ing on multi-resolution images. Lin ez al. [150] proposed
an encoder-decoder architecture comprised of hierarchical
Transformer-based modules to model the long-range depen-
dencies and the multi-scale context connections during the
process of down-sampling and up-sampling. Li ef al. [151]
proposed a different framework based on Transformers, that
uses a squeeze-and-excitation attention module to both reg-
ularize the self-attention mechanism of Transformers and
learn diversified representations. Ranjbarzadeh et al. [152]
addressed brain tumor segmentation in multi-modal MRI data
using a cascade CNN that processes both local and global fea-
tures in two different routes, combined with a distance-wise
attention mechanism that considers the effect of the location
of the center of the tumor and the brain. Ribeiro [153]
also addressed the task of brain tumor segmentation and
proposed an architecture inspired by the U-Net that integrates
an attention mechanism with adaptive-scale context to cap-
ture multi-scale information by processing parallel branches
with different scales. Petit et al. [154] designed a U-shaped
architecture for image segmentation with self-attention and
cross-attention from Transformers (i.e., U-Transformer).
They performed experiments on two abdominal CT-image
databases and obtained superior performance when compared
to U-Net-based models. Regarding skin lesion segmentation,
Wang et al. [155] proposed a boundary-aware Transformer
that aims to take advantage of boundary-wise priors through
a boundary-wise attention gate that highlights the ambiguous
boundaries to generate attention maps to guide the train-
ing. For tooth root segmentation, Li et al. [156] proposed
a Transformer-based architecture with the structure of the
U-Net backbone and optimized the training of this model
with a Fourier Descriptor loss function that takes advantage of
prior knowledge related to shape. Li ef al. [157] explored the
same task through an anatomy-guided multi-branch Trans-
former with multi-head attention that employs a polyno-
mial curve fitting segmentation strategy (based on keypoint
detection) to extract anatomy features. Following the work
described in [157], Guo et al. [158] implemented a similar
approach for retinal vessel segmentation. Regarding this task,
several other approaches were proposed. Wang et al. [159]
introduced a network that focuses on refining segmentation
errors by using an attention mechanism that considers the
differences between the ground truth and the predicted masks
as the (source of) supervision for learning the attention maps.
Guo et al. [160] proposed a network that builds upon residual
blocks and spatial attention to promoting the extraction
of complex vascular features while alleviating overfitting.
Duet al. [161] proposed a U-Net-based architecture that con-
tains pyramid pooling [162] modules and integrates an atten-
tion mechanism in its skip connections to promote the ability
to obtain global information and efficient learning of seman-
tic features. Gao et al. [163] developed a deep network that
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combines a feature fusion residual module with channel and
spatial attention mechanisms to promote the extraction of low
and high-dimensional features and effectively explore feature
dependencies at spatial and channel levels. Amer ef al. [164]
created a U-Net architecture that comprises residual blocks
and a multi-scale spatial attention module to capture and
select multi-scale context information while ensuring an
effective fusion of this information. Zhao ef al. [165] also
proposed a U-Net architecture that focuses on extracting
better features at spatial and channel levels. After revisiting
the work described in [157], Jin et al. [166] employed a
3D U-Net architecture with residual blocks and an atten-
tion module to extract volumes of interest in liver and
brain CT imaging data and perform tumor segmentation.
Sobirov et al. [167] applied the Transformer-based model
proposed by Hatamizadeh er al. [118] to the tasks of head
and neck tumor segmentation using multi-modal data (i.e.,
CT and PET images) and compared their results with CNN-
based approaches. Yan et al. [168] also employed a U-Net-
based structure for the task of multi-organ segmentation
in 3D medical image data, however, with slightly different
changes: in their approach, they used a CNN-encoder and
CNN-decoder with a Transformer model in between to fuse
contextual information in the neighboring image slices.

C. MEDICAL REPORT UNDERSTANDING

1) MEDICAL REPORT GENERATION

Using two medical databases containing radiological and
pathological images, Jing et al. [169] proposed a methodol-
ogy consisting of a multi-task deep learning model that jointly
performs the prediction of tags and the generation of para-
graphs, a co-attention mechanism for locating regions con-
taining abnormalities and generating narrations for them, and
a hierarchical LSTM model for generating long paragraphs.
One of the first mentions of using Transformer architectures
to generate medical image reports is described in [170].
In this work, the authors used X-ray data and proposed a
hierarchical framework trained with reinforcement learning.
This framework consists of an encoder that extracts visual
features through a bottom-up attention mechanism aimed
at identifying regions of interest and extracting top-down
visual features, and a Transformer-based non-recurrent cap-
tioning decoder aimed at generating a coherent paragraph
of medical image reports. Lovelace and Mortazavi [171]
developed a chest X-ray report generation algorithm that
consists of two training stages: the training of the report
generation model (based on a Transformer architecture) using
a standard language generation objective, and, after, the
fine-tuning of this model on clinical observations extracted
from reports sampled from the same model to regularize
the degree of coherence between the observations from
the generated and ground truth reports. In a similar task,
Srinivasan et al. [172] proposed a deep framework that uses
a CNN to extract features of the images and generate tag
embeddings for each image, and uses Transformers to encode
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the image and tag features with self-attention to get a
finer representation. Alternatively, Miura et al. [173] applied
a Transformer-based architecture trained with reinforcement
learning which comprises two different rewards, namely, one
that encourages the system to generate radiology domain
entities consistent with the reference, and one that uses nat-
ural language inference to encourage these entities to be
described in inferentially consistent ways. On the other hand,
Chen et al. [174] proposed to generate radiology reports with
a memory-driven Transformer, where a relational memory is
designed to record key information of the generation pro-
cess and a memory-driven conditional layer normalization
is applied to incorporate the memory into the decoder of
Transformer. Also in automatic chest X-ray report generation,
Liu et al. [175] created a contrastive-attention methodology
that compares a given input image with normal images to
distill contrastive information that better represents the visual
features of abnormal regions, thus providing more accurate
descriptions for an interpretable diagnosis and improving
the quality of the generated reports. Najdenkoska et al. [176]
tackled the same problem with variational topic inference
that consists of modeling a set of topics as latent variables
to guide sentence generation by aligning image and language
modalities in a latent space. Each topic contributes to the
generation of a sentence in the report. The entire pipeline is
refined with a visual attention module that enables the model
to attend to different locations in the image and generate
more informative descriptions. Alfarghaly et al. [177] pro-
posed a Transformer-based pipeline that involves the use of a
fine-tuned CheXNet model [178] to predict specific tags from
the image, the computation of weighted semantic features
from the predicted tag’s pre-trained embeddings, and the
conditioning of a pre-trained distilled GPT2 [179] model on
the visual and semantic features to generate the full medical
reports. Amjoud et al. [180] proposed an encoder-decoder
framework that combines the benefits of transfer learning
for feature extraction and the Transformer architecture
for medical report generation. Tipirneni et al. [181] pro-
posed a Transformer-based architecture to address multi-
variate clinical time series with missing values. A different
approach was discussed in [182], where the authors pro-
pose an encoder-decoder architecture that comprises both
CNN and Transformer modules and aims to explicitly quan-
tify the inherent visual-textual uncertainties existing in the
multi-modal task of radiology report generation both at the
report and sentence levels, and explore a novel method
to measure the semantic similarity of radiology reports,
which seems to better capture the characteristics of diag-
nosis information. A different research line focuses on imi-
tating the working patterns of radiologists, which typically
consist of examining the abnormal regions and assigning
the disease topic tags to these regions and then relying
on the years of prior medical knowledge and prior work-
ing experience to write reports [183]. Hence, in [183], the
authors proposed a posterior-and-prior knowledge exploring-
and-distilling approach that consists of three modules: the
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posterior knowledge explorer, which aims to provide explicit
abnormal visual regions to alleviate visual data bias; the
prior knowledge explorer, which aims to explore the prior
knowledge from the prior medical knowledge graph (i.e.,
medical knowledge) and prior radiology reports (i.e., work-
ing experience) to alleviate textual data bias; and the multi-
domain knowledge distiller that aggregates this processed
knowledge and generates the final reports. A very close
framework was described by Liu ef al. [184], in which the
authors proposed an unsupervised model knowledge graph
auto-encoder which accepts independent sets of images and
reports during training, and consists of three modules: the
pre-constructed knowledge graph, that works as the shared
latent space and aims to bridge the visual and textual domains;
the knowledge-driven encoder which projects medical images
and reports to the corresponding coordinates in that latent
space; and the knowledge-driven decoder that generates a
medical report given a coordinate in that latent space. This
modular structure is also employed by Nguyen et al. [185],
which added three complementary modules: a CNN-based
classification module that produces an internal checklist
of disease-related topics (i.e., the enriched disease embed-
ding); a Transformer-based generator that generates the med-
ical reports from the enriched disease embedding and pro-
duces a weighted embedding representation; and an inter-
preter that uses the weighted embedding representation to
ensure consistency concerning disease-related topics. Simi-
larly, You et al. [186] proposed a framework, which includes
two different attention-based modules: the align hierarchical
attention module that first predicts the disease tags from the
input image and then learns the multi-grained visual features
by hierarchically aligning the visual regions and disease
tags; and the multi-grained Transformer module that uses
the multi-grained features to generate the medical reports.
Still, on this line, Hou et al. [187] proposed a CNN-RNN-
based medical Transformer trained end-to-end, capable of
extracting image features and generating text reports that aim
to fit seamlessly into clinical workflows.

2) MISCELLANEOUS TASKS

Recently, Zhou er al. [188] proposed a cross-supervised
methodology that acquires free supervision signals from orig-
inal radiology reports accompanying the radiography images,
and employs a Vision Transformer, designed to learn joint
representations from multiple views within every patient
study. Regarding automatic surgical instruction generation,
Zhang et al. [189] introduced a Transformer-based encoder-
decoder architecture trained with self-critical reinforcement
learning to generate instructions from surgical images, and
reported improvements against the existing baselines over
several caption evaluation metrics. Wang et al. [190] pro-
posed a Transformer-base training framework designed for
learning the representation of both the image and text data,
either paired (e.g., images and texts from the same source)
or unpaired (e.g., images from one source coupled with texts
from another source). They applied their methodology to
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different chest X-ray databases and performed experiments in
three different applications, i.e., classification, retrieval, and
image regeneration.

D. OTHER TASKS

This subsection includes medical tasks whose interest in
the field is currently increasing: medical image detection,
medical image reconstruction, medical image retrieval, med-
ical signal processing, and physiology and pharmaceutical
research.

1) MEDICAL IMAGE DETECTION

Regarding colorectal polyp detection, Shen efal. [191]
approached several colonoscopy databases and proposed an
architecture constituted by a CNN for feature extraction,
Transformer encoder layers interleaved with convolutional
layers for feature encoding and recalibration, Transformer
decoder layers for object querying, and a feed-forward
network for detection prediction. Similarly, Liu et al. [192]
addressed the same task using an encoder-decoder archi-
tecture with a ResNet50-based CNN backbone as the
encoder, and a Transformer-based module as the decoder
and Mathai ef al. [193] addressed the task of lymph node
detection using MRI data employing analogous strategies.

2) MEDICAL IMAGE RECONSTRUCTION

Gong et al. [194] addressed the reconstruction of linear para-
metric images from dynamic positron emission tomography
(PET) and implemented a 3D U-Net [195] model with an
attention layer that focuses on prior anatomical information
during training to improve the quality of the reconstruction
of dynamic PET images of the human brain. Liang and
Gu [112] also explored the reconstruction of brain MRI data
as aregularization strategy to aid the diagnosis of Alzheimer’s
disease.

3) MEDICAL IMAGE RETRIEVAL

Grundmann et al. [196] and Kim et al. [197] developed new
methods to perform an automatic retrieval and analysis of
clinical notes. Li et al. [198] and Ma et al. [199] developed
new models for the automated evaluation of root canal ther-
apy and significant stenosis detection in coronary CT angiog-
raphy of coronary arteries, respectively.

4) MEDICAL SIGNAL PROCESSING

Nauta ef al. [200] explored the combination of attention
mechanisms and causal discovery techniques. Using sim-
ulated functional MRI data containing blood-oxygen-level
dependent data sets for 28 different underlying brain net-
works, this work proposed a deep learning framework based
on attention that learns a causal graph structure by discover-
ing causal relationships in observational time series data.

5) PHYSIOLOGY AND PHARMACEUTICAL RESEARCH
Lately, deep learning has also revealed itself to be a popular
framework for physiology and pharmaceutical research (e.g.,
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drug combination prediction, protein residue-residue contact
prediction). Naturally, since this field also involves high-stake
decisions, the increase in the predictive performance of deep
learning architectures in several problems of this topic [201],
[202], [203], [204] motivated the need to explain the internal
mechanisms of these algorithms and improve their explain-
ability. Interestingly, the strategy employed by machine
learning practitioners is based on attention mechanisms.
Therefore, we consider it relevant to include works on this
matter in this survey, even though they may not be considered
direct medical applications. Filipavicius et al. [205] studied
the use of Transformer-based language models for protein
classification using long sequences. The authors also per-
formed several experiments on the compression of the protein
sequences and prepared new pre-training and protein-protein
binding prediction databases. Chen et al. [206] presented an
attention-based (i.e., regional and sequence attention) CNN
for protein contact prediction and for the identification of
interpretable patterns that contain useful insights into the
key fold-determining residues in proteins. Wang et al. [207]
recently proposed a deep learning framework based on graph
neural networks with an attention mechanism to identify drug
combinations that can effectively inhibit the viability of spe-
cific cancer cells. Khan et al. [208] used a Transformer-based
architecture for the analysis of high-dimensional gene expres-
sion data and reported improved results on the task of lung
cancer sub-types classification.

IV. CASE STUDIES

Most of the works of the previous section are often based
on predictive performance (i.e., accuracy) rather than show-
ing that these algorithms are moving towards the increase
of transparency or interpretability. In a high-stake decision
area such as healthcare, the authors must care about framing
their proposals to the context of the application. Therefore,
we decided to design an experimental set of case studies,
involving three different use cases (i.e., breast lesion, chest
pathology, and skin lesion), wherein the main goal is to
provide insight into the impact of using attention mechanisms
in deep learning algorithms for medical image applications.
On the one hand, we assess this impact from the perspective
of predictive performance (i.e., accuracy). On the other hand,
we report post-model attribution maps obtained with different
interpretability frameworks to visualize the image regions
that contributed most to the final predictions. We acknowl-
edge that the visual assessment of these attribution maps is
subject to a high degree of subjectivity. However, we argue
that this analysis can serve as an indirect evaluation of the
degree of interpretability of these models.

A. DATA

To ensure that our conclusions are independent of the data,
we selected medical image classification databases related to
three different use-cases: diabetic retinopathy, chest patholo-
gies and skin lesion classification. Table 1 presents the num-
ber of training, validation and test examples for each data set,
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TABLE 1. Data splits and meaning of labels for each data set.

Data set Splits Labels

Train  Validation Test 0 1
APTOS2019 2334 778 550  Normal  Diabetic Retinopathy
ISIC2020 19593 6568 6965  Benign Malign
MIMIC-CXR 61203 534 1072 Normal Pleural Efusion

and the meaning of the labels we used in this classification
case study.

1) APTOS2019

The APTOS2019 data set contains retinography images taken
under a variety of imaging conditions (mydriatic vs. non-
mydriatic) and from different camera models and ethnicities.
The data set was generated by Aravind Eye Hospital in India
in cooperation with Asia Pacific Tele-Ophthalmology Society
(APTOS). Each retinal image has been graded independently
by two ophthalmologists, with any disagreements adjudicated
by a third ophthalmologist. A retinopathy severity score was
assigned to each image according to the NHS diabetic eye
screening guidelines® as RO (no diabetic retinopathy), R1
(background), R2 (pre-proliferative), R3 (proliferative), MO
(no visible maculopathy), M1 (maculopathy). A curated ver-
sion of this data set was used in the APTOS 2019 Blindness
Detection hosted on Kaggle.* For the binary classification
case, we grouped all the non-RO classes into the ‘“‘diabetic
retinopathy” class (see Table 1).

2) ISIC2020

The ISIC2020 [209] data set contains dermoscopic training
images of unique benign and malignant skin lesions from
over 2000 patients. Each image is associated with one of
these individuals using a unique patient identifier. All malig-
nant diagnoses have been confirmed via histopathology, and
benign diagnoses have been confirmed using either expert
agreement, longitudinal follow-up, or histopathology. The
data set was generated by the International Skin Imaging Col-
laboration (ISIC) and images were collected by the following
sources: Hospital Clinic de Barcelona, Medical University of
Vienna, Memorial Sloan Kettering Cancer Center, Melanoma
Institute Australia, University of Queensland, and the Univer-
sity of Athens Medical School. The data set was curated for
the SIIM-ISIC Melanoma Classification Challenge hosted on
Kaggle.’

3) MIMIC-CXR

The MIMIC Chest X-ray (MIMIC-CXR) Database v2.0.0
[210] is a large publicly available data set of chest radiographs
in the Digital Imaging and Communications in Medicine
(DICOM) format with free-text radiology reports. The data
set contains 227835 imaging studies for 65379 patients of the

3 https://www.gov.uk/government/collections/diabetic-eye-screening-
commission-and-provide

4https://www.kag gle.com/c/aptos2019-blindness-detection

5 https://www.kaggle.com/c/siim-isic-melanoma-classification/overview
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Beth Israel Deaconess Medical Centre Emergency Depart-
ment (Boston, MA) between 2011-2016. Each imaging study
can contain one or more images, usually a frontal and a lateral
view. A total of 377,110 images are available in the data set.
Studies are made available with a semi-structured free-text
radiology report that describes the radiological findings of
the images, written by a practicing radiologist during routine
clinical care. The data set is de-identified to satisfy the US
Health Insurance Portability and Accountability Act of 1996
(HIPAA) Safe Harbor requirements. Protected health infor-
mation (PHI) has been removed. For the binary classification
case we used a subset of images of the anterior-posterior
view related to the presence or absence of pleural efusion
(see Table 1).

B. METHODOLOGY

We divided the experimental part of this survey into several
phases, described below. We conducted all the experiments
using the PyTorch library [211] for Python.

1) BACKBONE MODELS

In the first phase of this study, we trained two deep learning
backbones (i.e., DenseNet-121 [212], ResNet-50 [113]) on
each data set. DenseNet-121’s architecture [212] allows con-
necting all layers (with matching feature-map sizes) directly
with each other, thus improving the flow of information and
gradients throughout the network, and facilitating their train-
ing. ResNet50’s architecture introduced the deep residual
learning framework, which consists of adding skip connec-
tions that perform identity mapping, and adding their outputs
to the outputs of the stacked layers. We refer the reader to
the original papers for more details. We used these backbone
models in our experiments because they are well known and
widely used in the deep learning community. In this work,
we refer to these models as DenseNet-121 and ResNet-50.

2) SQUEEZE-AND-EXCITATION ATTENTION BLOCK

In the second phase, we adapted the Squeeze-and-Excitation
(SE) attention block [52] (see Fig. 3) to each of the back-
bones and trained these new architectures on the three data
sets. According to the authors of the original paper [52],
this attention block was designed to adaptively recalibrate
channel-wise feature responses by explicitly modeling inter-
dependencies between channels. Since one of the original
implementations uses the ResNet-50, we used the author’s
implementation in our study, which consists of integrating the
SE block between the residual layers and the activation func-
tion (in this case, the rectified linear unit (ReLU)). Following
this rationale, in the case of DenseNet-121, we integrated
the SE block between the dense and the transition blocks.
We decided to use the SE block in our experiments because
it was one of the first proposals of channel attention for
computer vision, and it is widely used by the community as a
comparison reference. Besides, since we are building our case
studies in medical image classification using RGB images,
our interests also rely on studying the effects of attention on
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FIGURE 3. Block diagram of the Squeeze-and-Excitation (SE) attention
block, according to [52].
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FIGURE 4. Block diagram of the Convolutional Block Attention Module
(CBAM), according to [68].

the channel dimension. In this work, we refer to these models
as SEDenseNet-121 and SEResNet-50.

3) CONVOLUTIONAL BLOCK ATTENTION MODULE

In the third phase, we adapted the Convolutional Block
Attention Module (CBAM) [68] (see Fig. 4) to each of the
backbones and trained these new architectures on the three
data sets. According to the authors of the original paper, the
CBAM mechanism integrates two specific attention blocks:
the channel attention module, which aims to produce a chan-
nel attention map by exploiting the inter-channel relationship
of features and is considered as a feature detector (see Fig. 5);
and the spatial attention module, which aims to generate a
spatial attention map by utilizing the inter-spatial relationship
of features, thus being complementary to the channel atten-
tion (see Fig. 6). Like the SE attention block, we integrated
the CBAM mechanism at the same topographical location
of the architectures of the backbone models. Following the
decision on the SE block, we considered it important to study
the spatial dimension of images. Therefore, since CBAM
integrates both the attention and spatial dimensions in its
pipeline, we can perceive this module as an upgrade to the
SE block. Besides, it is important to note that this module
is also well-known in the community, and, therefore, it is
validated as well. In this work, we refer to these models as
CBAMDenseNet-121 and CBAMResNet-50.

4) DATA-EFFICIENT IMAGE TRANSFORMER

In the fourth phase, we tested a Transformer-based archi-
tecture composed solely of attention mechanisms. The
Data-efficient image Transformer (DeiT) [79] is an archi-
tecture inspired by the Vision Transformer [18], and trained
with fewer parameters. In this case, we used the DeiT-Ti
variation [79], which has a comparable number of parameters
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FIGURE 6. Block diagram of the Spatial Attention Module of the
Convolutional Block Attention Module (CBAM), according to [68].

against the chosen CNN backbones. Besides being vali-
dated by the community (as in previous examples), this
Vision Transformer architecture has a proportional number
of parameters (see Table 4) to the backbone models, thus
allowing us to mitigate eventual model complexity effects
on the predictive performance of this model. In this work,
we refer to this model as DeiT.

5) POST-MODEL INTERPRETABILITY

In the fifth phase, we generated visual explanation maps
(i.e., saliency maps) using the Deep Learning Important
FeaTures (DeepLIFT) [213] and the Layer-wise Relevance
Propagation (LRP) [214] post-hoc methods. DeepLIFT [213]
compares the activation of each neuron to its related refer-
ence activation, and assigns contribution scores according
to the difference. LRP [214] is a methodology that aims to
create visualizations of the contributions of single pixels to
predictions. We decided to employ this strategy as a proxy
for the degree of interpretability of models, thus allowing
our work to be comparable to current research. We used the
Captum [215] library for Python to generate these post-hoc
saliency maps for the backbones and their attention-based
versions. Regarding the DeiT, we refer the reader to [216],
which proposed a framework to generate LRP attributions for
Transformer-based architectures.

6) DATA PROCESSING

Regarding the data processing pipeline, all the images
were resized to the dimensions of 224 x 224, and a
z-normalization was applied to each RGB channel. The mean
and standard deviation parameters used in this operation
depend on the initialization of the weights of the model.
In the case of DenseNet-121, ResNet-50, SEDenseNet-121,
SEResNet-50, CBAMDenseNet-121 and CBAMResNet-50,
the weights were initialized from a pre-training on the Ima-
geNet database [217] with mean = [0.485, 0.456, 0.406],
and std = [0.229, 0.224, 0.225]. In the case of DeiT, the

VOLUME 10, 2022



T. Gongalves et al.: Survey on Attention Mechanisms for Medical Applications: Are We Moving Toward Better Algorithms?

IEEE Access

TABLE 2. Data augmentation parameters used during the training step of
all the phases.

Parameter Value
Angle of rotation in degrees [—10,10]
Horizontal translation shift 0.05
Vertical translation shift 0.1
Scaling factor [0.95,1.05]
Horizontal flip probability 0.5

TABLE 3. Set of hyper-parameters used during the training step of all the
phases. Please note that we present the batch size as a closed interval
since we had to adapt its value during some of the training runs due to
computational constraints (e.g., availability of GPU RAM).

Hyper-parameter Value
Number of epochs 300
Loss function Cross-entropy
Optimiser Adam
Learning rate 1x 10~
Batch size [2,32]

weights were initialized from a pre-training on the ImageNet
database with mean = [0.500, 0.500, 0.500], and std =
[0.500, 0.500, 0.500].

7) DATA AUGMENTATION

Regarding the data augmentation strategy, we decided
to create a pipeline composed of several random affine
transformations, i.e., random rotations, random transla-
tions, random scaling and random horizontal flip. Table 2
presents the parameters of data augmentation used in our
experiments.

8) TRAINING

We trained all the models in the different databases using
the same optimization hyper-parameters. During training,
we saved the best model weights according to a decrease
in the validation loss. Table 3 presents the optimization
hyper-parameters used in our experiments. We also con-
ducted a low data regime experiment, hence, all the models
were trained using 1%, 10%, 50% and 100% of the training
data. In imbalanced data sets (i.e., ISIC2020, MIMIC-CXR)
we applied class-weights in the loss function.

C. RESULTS

1) PREDICTIVE PERFORMANCE

Figs. 7, 8 and 9 respectively present the predictive perfor-
mance (i.e., accuracy) results of the different models on the
APTOS2019, ISIC2020 and MIMIC-CXR data sets, using
different percentages of training data.

2) MODEL COMPLEXITY

Table 4 presents the model complexity (i.e., the number
of parameters) information for the models used in our
experiments.
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FIGURE 7. Predictive performance (i.e., accuracy) results of the different
models on the APTOS2019 data set, using different percentages of
training data.
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FIGURE 8. Predictive performance (i.e., accuracy) results of the different
models on the 1SIC2020 data set, using different percentages of training
data.

TABLE 4. Model complexity (i.e., the number of parameters) information
for the models used in our experiments.

Model Number of parameters
DenseNet-121 7,054,210
ResNet-50 23,512,130
SEDenseNet-121 7,357,314
SEResNet-50 26,027,074
CBAMDenseNet-121 7,360,706
CBAMResNet-50 26,044,722
DeiT 5,486,786

3) POST-MODEL INTERPRETABILITY
Tables 5, 6 and 7 present examples of LRP and DeepLIFT

post-hoc saliency maps obtained for images of the
APTOS2019 data set with labels 0 and 1 correctly classified,
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TABLE 5. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the APT0S2019 data set with the label 0 correctly classified as 0 by all

models.
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E ™
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+ CBAM Layer
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TABLE 6. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the APTOS2019 data set with the label 1 correctly classified as 1 by all

models.
DENSENET RESNET
Original Image No Attention + SE Layer -+ CBAM Layer No Attention + SE Layer + CBAM Layer
o "
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DeiT (LRP) No Attention + SE Layer + CBAM Layer No Attention + SE Layer + CBAM Layer
- i
L
=
o
o
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and with label O incorrectly classified by all models, respec-
tively. The same structure is followed for examples of
the ISIC2020 (Tables 8, 9, 10 and 11) and MIMIC-CXR
(Tables 12, 13, 14 and 15) data sets, with the addition of
examples from the label 1 incorrectly classified by all models.
We used the Matplotlib [218] library for Python to generate
these saliency maps visualizations, using the “bwr” color
map, which represents negative values in blue, zero values
in white and positive values in red.

D. DISCUSSION

1) PREDICTIVE PERFORMANCE

All the experiments related to the predictive performance
of deep learning models on the different data sets suggest
that it is not clear that one should expect improvements
in their accuracy when using attention mechanisms. Sev-
eral attention-based architectures tend to lower their pre-
dictive performances against their baseline architectures.
Besides, even when directly comparing a Transformer-based
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architecture (i.e., DeiT), the same baseline architectures seem
to achieve comparable results. Given that the intuition behind
attention mechanisms is that these end up learning the most
relevant features, one might expect that attention-based archi-
tectures would perform better when trained in low data
regimes. However, results obtained in all data sets suggest that
this might not be the case. In fact, we can observe that, apart
from the Transformer-based architecture, the baseline back-
bone models often perform better. Hence, it is reasonable to
conclude that the use of attention mechanisms will not always
bring benefits to the training of deep learning algorithms,
an argument that contrasts with a trending narrative in most
recent papers. On the other hand, the results reported in the
literature often relate to marginal or residual improvements
in the state-of-the-art backbone networks. Given that the
training of deep learning algorithms is generally a stochastic
process, there is a need to assess these reported improve-
ments with a more critical view and with robust statistical
tests.
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TABLE 7. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the APT0S2019 data set with the label 0 incorrectly classified as 1 by all
models.
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TABLE 8. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the 1S1C2020 data set with the label 0 correctly classified as 0 by all
models.
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TABLE 9. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the 1S1C2020 data set with the label 1 correctly classified as 1 by all
models.
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TABLE 10. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the 1S1C2020 data set with the label 0 incorrectly classified as 1 by all

models.
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TABLE 11. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the 1S1C2020 data set with the label 1 incorrectly classified as 0 by all

models.
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TABLE 12. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the MIMIC-CXR data set with the label 0 correctly classified as 0 by all

models.
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TABLE 13. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the MIMIC-CXR data set with the label 1 correctly classified as 1 by all
models.
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TABLE 14. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the MIMIC-CXR data set with the label 0 incorrectly classified as 1 by all
models.
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TABLE 15. Example of LRP and DeepLIFT post-hoc saliency maps for an image of the MIMIC-CXR data set with the label 1 incorrectly classified as 0 by all
models.
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FIGURE 9. Predictive performance (i.e., accuracy) results of the different
models on the MIMIC-CXR data set, using different percentages of
training data.

2) MODEL COMPLEXITY

The integration of attention mechanisms increases the
number of parameters of the deep learning models, thus
increasing their complexity. This information allows us to
conclude that, at least for computer vision applications, it is
not necessarily true that the use of attention mechanisms
contributes to the decrease of model complexity. While this
may be true in several natural language processing appli-
cations, it is not correct to generalize such a rule to other
types of applications. On the other hand, since these attention
mechanisms often rely on simple operations (e.g., matrix
multiplications), such as convolutions, we acknowledge that
their use may reduce the training time of deep learning
algorithms (similarly to what happened when the community
started using CNNs). This aspect, though, was not objec-
tively assessed in our experiments. However, since they
are particularly efficient at modeling long-range dependen-
cies (e.g., Transformer-based architectures), we expect these
mechanisms to keep increasing their popularity and, hence,
become widely used in medical image applications. Besides,
Cordonnier et al. [219] reported that these mechanisms may
operate similarly to CNNs. Another question arises from
these results: are these attention-based algorithms allegedly
performing well because of the inner-functioning of their
attention mechanisms themselves or just because we are
increasing the number of model parameters? While one may
report that this issue is nonsense, we point out that some
Transformer-based architectures have a considerably high
number of parameters [79].

3) POST-MODEL INTERPRETABILITY

Although there are already several works that criticize the
subjectivity of post-hoc saliency maps [220], [221], [222],
[223], [224], [225], it is still common to use these methods to
justify improvements related to the degree of interpretability
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of models. In this sense, when analyzing the results obtained
with the DenseNet-121 and ResNet-50 models, we would
expect that, with the increase in complexity of the attention
mechanism, the distribution of the important pixels around
the image would also be more focused (i.e., would have less
variance). However, that does not seem to happen in our
use cases. Interestingly, besides the inherent properties of
the data and the task (i.e., images of the retina are different
from skin images and chest X-ray images), the results dras-
tically change when we use a different backbone. In general,
ResNet-based models attain less noisy DeepLIFT and LRP
saliency maps, with some exceptions in the ISIC2020 data
set (e.g., Table 11). On the other hand, the LRP saliency
maps obtained for the DeiT seem to highlight somewhat
clear regions of the images. Besides, it is also important
to remind the reader that these frameworks allow us to
generate explanations even for the cases where the model
miss-classifies. We also stress that one of the limitations
of such analysis is that there does not exist an objective
ground truth of what a high-quality visual explanation is.
Therefore, it is not trivial, in computer vision tasks such as
this, to conclude with complete confidence that, even for the
cases where the model succeeds, it learned the right corre-
lations. Hence, can we believe the narrative that attention
mechanisms are learning the most relevant features of the
image? Or is this type of analysis a result of luck in most
cases? Truth is, our results still suggest that there is a high
degree of subjectivity (i.e., the interpretation of these saliency
maps deeply depends on the human that is interpreting them)
and that there is no apparent correlation between the use
of attention mechanisms and the visual aspect of the attri-
butions. Besides, we stress that these visualizations shown
in the literature depend on several parameters (e.g., type of
color map, overlay parameter). Moreover, the method we
use to generate such visualizations may often change what
we expect users to observe. This is also related to another
open challenge in post-hoc explanation methods that is the
sign of the attributions. What should we expect? Positive
attributions for the positive class and negative attributions
for the negative class, or the other way around? Should we
always normalize the sign of the attributions so it is always
positive? This motivates our statement on the need for more
objective methods to assess the degree of interpretability of
models.

V. CONCLUSION AND FUTURE CHALLENGES

This section summarizes the main conclusions of this sur-
vey and points to future directions toward the study of
attention-based algorithms for medical applications.

A. CONCLUSION

This survey presented an exhaustive overview of the use of
attention mechanisms for medical applications and provided
an experimental study on medical image classification that
approached three different use cases. We found that back-
bone models can attain equivalent predictive performances to
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Transformer-based architectures with equivalent model com-
plexity (i.e., number of parameters). Moreover, when using a
post-hoc framework to visually assess what type of features
these models can extract, we can conclude that there is still
a high degree of subjectivity in such analysis. The results
are very noisy, even for the cases of attention mechanisms,
which is counter-intuitive (i.e., with attention mechanisms,
these saliency maps should have less noise). The commu-
nity is moving toward using attention mechanisms (specially
Transformer-based ones) and arguing that these frameworks
increase the quality, transparency, and interpretability of deep
learning architectures. However, we state that this is not
true and that there are several open challenges one needs to
address to achieve this.

B. FUTURE CHALLENGES

1) ATTENTION MECHANISMS: PAST OR FUTURE?

The research on attention-based models is in constant evolu-
tion and requires a validation and maturation step. Besides,
as these models keep rising in popularity and keep convinc-
ing the community of their benefits, we acknowledge that
they will appear as a common block in future architectures.
However, the scientific community must keep in mind that
high-stake decision areas (e.g., finance, healthcare, justice)
require algorithms to be fair and transparent [224]. Therefore,
even if attention mechanisms are pushing deep learning algo-
rithms towards the limits of their predictive power, we must
start thinking about creating interpretable frameworks that
allow us to audit and assess these algorithms concerning the
specific conditions of their domains (i.e., in the case of this
work, healthcare).

2) DESIGN AND INTEGRATION OF ATTENTION
MECHANISMS

A potential disadvantage of the investment in attention mech-
anisms is related to the design of novel strategies of atten-
tion and their integration into well-studied backbone models.
Several works on attention often rely on a specific backbone
architecture for their experiments. Besides, if we look at
the topographies of these deep learning algorithms, it is not
always clear for the users where they should place these
modules, and why it makes sense to put them in a specific
place. Once again, another question arises: are these attention
modules dependent on the backbone into which they are inte-
grated to? Can we consider that the reported improvements
related to the predictive performance of deep learning models
are solely due to the addition of an attention module? Can we
come up with an objective strategy that guides future users
in building and integrating attention mechanisms into their
models?

3) THE RISE OF TRANSFORMERS

Apart from the current deep algorithms with attention mech-
anisms, it is crucial to talk about Transformer-based archi-
tectures. The attentive reader might have noticed that most
of the recent approaches to the use of attention-based models
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in medical applications rely on Transformer-based modules.
While there is hype on the use of these structures, it is not
clear whether they are more interpretable or not, or if their
generalization power is superior to the other deep models.

4) INTERPRETABILITY IS THE PATH TO BETTER ALGORITHMS
Even if we acknowledge that the Transformer-based algo-
rithms are provoking a shift in the paradigm, it is not clear
that they are improving the transparency of algorithms. For
instance, in [79], the authors show that when training a DeiT
using knowledge distillation techniques, the Transformer
ends up learning better when the feacher model is a CNN.
Hence, if the Transformer is learning with a non-interpretable
model by design, how can we trust that the Transformer
is inherently interpretable? On the other hand, given the
capacity of these attention-based models to learn long-range
dependencies, we must create objective techniques to assess
the quality of the features learned by these frameworks,
while moving towards the design of intrinsically interpretable
attention-based architectures. Even if we intend to keep
using visual saliency maps to explain our models, in a high
stake decision field such as healthcare, we must achieve a
clear standard, validated by the clinical community, of what
these maps should look like and what is their effective
meaning.
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