
Optimisation of Deep Neural Networks using a Genetic Algorithm: A Comparative Study

Tiago Gonçalves1,2

tiago.f.goncalves@inesctec.pt

Leonardo Capozzi1,2

leonardo.g.capozzi@inesctec.pt

Ana Rebelo3

ana.maria.s.rebelo@accenture.com

Jaime S. Cardoso1,2

jaime.s.cardoso@inesctec.pt

1 Faculdade de Engenharia
Universidade do Porto
Porto, Portugal

2 INESC TEC
Porto, Portugal

3 Accenture Portugal
Lisboa, Portugal

Abstract

Deep learning algorithms have been challenging human performance in
several tasks. Currently, most of the methods to design the architectures
of these models and to select the training hyper-parameters are still based
on trial-and-error strategies. However, practitioners recognise that there is
a need for tools and frameworks that can achieve high-performing models
almost automatically. We addressed this challenge using a meta-heuristics
approach. We implemented a genetic algorithm with a variable length
chromosome with three different benchmark data sets. In this compara-
tive study, we vary the architectures of the convolutional and the fully-
connected layers and the learning rate. The best models achieve accuracy
values of 98.73%, 90.81% and 54.71% on MNIST, Fashion-MNIST and
CIFAR-10, respectively.

1 Introduction

The increased availability of computational power and the possibility of
using graphics processing unit (GPU) cards to train and deploy deep learn-
ing algorithms in less time, allowed practitioners to implement models
with complex and deep architectures and to use bigger data sets to train
and validate such models. However, despite their high performances and
ability to deal with raw data, these complex models require a manual se-
lection of training parameters (commonly known as hyper-parameters) to
converge properly. This is usually done in trial-and-error basis, meaning
that the process may be time-consuming and tedious. To overcome this
challenge, the field of automated machine learning (Auto-ML) has been
created to develop tools and frameworks to achieve high-performing mod-
els almost without the need of human intervention [8]. Following the main
ideas of [7], we performed a comparative study, using a variable-length
chromosome genetic algorithm to optimise the hyper-parameters of deep
learning models on three benchmark data sets (MNIST, Fashion-MNIST
and CIFAR-10). Code is available in a public GitHub repository1.

2 Background

2.1 Optimisation of Hyper-parameters in Deep Learning

In this work, we consider hyper-parameters all the variables that we can
manually define before the beginning of the training of the algorithm
(e.g., type of layers, type of activation functions, the loss function, the
optimiser), the learning rate, the dropout rate and the number of epochs).
There are several strategies of hyper-parameter optimisation, namely: grid-
search, which consists of performing a complete search over the subset of
parameters; random-search, which works similarly as grid-search with
the difference that the search is performed randomly over the subset of
parameters; Bayesian optimisation, which consists of building a proba-
bilistic model based on the evaluation of the function and any available
prior information, and uses that model to select the subsequent configura-
tions of hyper-parameters to evaluate [1]; reinforcement learning, which
consists of the utilisation of learning agents to learn the best optimisation
procedures under some policy constraints [5]; and heuristics and meta-
heuristics, which consists of the application of heuristics and/or meta-
heuristics approaches.

1https://github.com/TiagoFilipeSousaGoncalves/
optimizing-dl-parameters-pdeec

2.2 Genetic Algorithms

Inspired by the biological mechanisms and by Darwin’s theory of evolu-
tion by natural selection, genetic algorithms rely on the fact that the fittest
individuals (i.e., solutions) will prosper and will produce offspring. Also,
this strategy assumes that the best characteristics (i.e., genes) are passed
on the next generations. The main intuition behind this method is to en-
sure progress along with the generations and be sure that the best solutions
will prosper through the execution of the algorithm. A standard genetic al-
gorithm usually works as follows: 1) define a solution representation and
proper encoding of the genes/chromosomes; 2) generate random solutions
and evaluate them using a fitness function; 3) select the fittest individuals
and apply a crossover operation to produce offspring, inducing (or not)
random mutations to the next generations to increase variability.

3 Methodology

3.1 Solution Representation

Our solution representation consists of an array composed by: 1) the con-
volutional layers block, which is a tensor composed of the convolutional
layers that will be part of the architecture of the model, and each convo-
lutional layer is represented as a tensor of convolutional layer’s parame-
ters (i.e., the number of convolutional filters, the size of the convolutional
kernel, the type of activation function, the dropout rate and the type of
pooling function); 2) the fully-connected layers block, which is a tensor
composed of the fully-connected layers that will be part of the architec-
ture of the model, and each fully-connected layer is represented as a tensor
of fully-connected layer’s parameters (i.e., the number of output neurons,
the type of activation function and the dropout rate); 3) the learning rate
that is used to train the model.

3.2 Parameters to Optimise

Table 1 represents the type of parameters of the convolutional layers that
we intended to optimise along with the values considered. Table 2 repre-
sents the type of parameters of the fully-connected layers that we intended
to optimise along with the values considered. Please note that “ReLU”
stands for “Rectified Linear Unit”, “Tanh” stands for “hyperbolic tan-
gent”, “Max” stands for “Maximum Pooling” and “Avg” stands for “Aver-
age Pooling”. Due to time constraints, we selected adaptive moment esti-
mation (Adam) [2] as the only network parameter optimisation algorithm,
however, with variable learning rates (v ∈ {0.001,0.0001,0.00001}).

Table 1: Names and possible values for the convolutional layers.

Name Possible Values

Number of Convolutional Filters v ∈ {8,16,32,64,128,256,512}
Size of the Convolutional Kernel v ∈ {1,3,5,7,9}
Type of Activation Function Identity, ReLU, Tanh
Range of Dropout Probability v ∈ [0,1]
Type of Pooling Function Identity, Max, Avg

3.3 Data

To perform this comparative study we use three benchmark data sets:
MNIST [4], Fashion-MNIST [6] and CIFAR-10 [3].



Table 2: Names and possible values for the fully-connected layers.

Name Possible Values

Number of Output Neurons v ∈ [1,100]
Type of Activation Function Identity, ReLU, Tanh
Range of Dropout Probability v ∈ [0,1]

3.4 Genetic Algorithm of Variable Chromosome Length

We start by defining fmax (maximum number of phases), gmax (number
of generations), pmax (number of individuals of the population), i (initial
chromosome length), e (number of train epochs), s (number of automat-
ically selected individuals) and m (mutation rate). In the first phase f0,
first generation g0, we generate p = pmax random solutions with chro-
mosome length clen = i. We then train all the solutions on the training
set for e epochs and save their accuracy values. After obtaining all these
values, the solutions are sorted according to their accuracy values and the
best s solutions are automatically selected for the next generation gi. The
solutions are then selected according to a given probability, dependent
on their accuracy values (i.e., solutions with high accuracy values have
high probabilities of being selected). After the selection, the solutions go
through the operation of crossover. The solutions may also suffer gene
mutations at a given rate of m. This processed is repeated until gi = gmax.
In the end of the last generation, we move on to the nest phase fi and
the chromosome length is updated, clen+ = 1. In the phases fi > f0, the
solutions are initialised with the weights of the best solution of the pre-
vious phase, through a transfer learning operation. The main idea here
is to ensure that the initialisation of the solution of the next phases is not
random. This way we ensure that the solutions have already some prior
knowledge. One of the main reasons for this procedure is to ensure that
e will not have a significant impact on the training of the solutions with
longer chromosomes. Even if the solutions have different architectures,
we transfer the maximum number of parameters from the reference so-
lution. We also add an early-stopping parameter to the algorithm which
stops the search if the fitness of the best model achieved so far does not
increase from one phase to the next one. When the algorithm reaches
convergence, we train the fittest solution for 30 epochs on the training set
and test the model on the test set of each data set. To calculate the best
individuals of a given generation we need to compute a fitness value for
each individual. The initial fitness function that was implemented can be
written as F(s) = accuracy(s), where s is a solution and accuracy(s) is
the classification accuracy of solution s.

4 Results and Discussion

Table 3: Accuracy (%) and loss values obtained with the best model for
the test set of MNIST, Fashion-MNIST and CIFAR-10.

Data set Accuracy (%) Loss

MNIST 98.73 0.01878
Fashion-MNIST 90.81 0.11558
CIFAR-10 54.71 1.46837

Table 3 presents the accuracy and loss values achieved in all data sets.
Since the complexity of the data set increases from MNIST to CIFAR-10,
the results are coherent, since the best (i.e., higher accuracy and lower
loss) are achieved in the MNIST data set, followed by Fashion-MNIST
and CIFAR-10. Additional results show that, in all data sets, solutions
seems to lose quality from one phase to the next one (i.e., when we in-
crease by the size of the chromosome). This becomes clearer when we
observe the overall distribution of the fitnesses of the generated solutions
(Figure 1 presents the distribution for MNIST database) and the distribu-
tion of the fitnesses of the generated solutions in each phase, respectively.
An extended analysis of the results is publicly available in our extended
report2. Intuitively, increasing the size of the chromosome from one phase
to another (i.e., increasing the complexity of the model) would mean that
the model would over-fit easier. However, we believe that this did not
happen due to two possible causes: our transfer learning procedure is not

2https://github.com/TiagoFilipeSousaGoncalves/
optimizing-dl-parameters-pdeec/blob/main/report.pdf

benefiting the model in terms of the initialisation of its weights or the
number of training epochs (e) is not enough.

Figure 1: Overall distribution of the fitnesses of the generated solutions
for MNIST database.

5 Conclusions and Future Work

Following the ideas described in [7], we implemented a genetic algorithm
with variable chromosome length to achieve deep learning architectures
that fit better certain data sets. The results obtained are in accordance
to what has been reported in the literature and are coherent, i.e., using
the same parameters to initialise the algorithm, thus, it makes sense that
the best results are obtained with the simplest data set, which, in this
work, is MNIST. Further work should be devoted to an ablation study in
which we remove the transfer learning procedures to evaluate the impact
of this operation in the quality of the generated solutions and to add a vari-
able number of epochs and different algorithms of optimisation as hyper-
parameters to achieve better training and test results. Besides, it would
also be interesting to study new approaches in terms of fitness functions
(e.g., include the training epochs (e)).

Acknowledgements

This work was developed within the Component 5 - Capitalization and
Business Innovation, integrated in the Resilience Dimension of the Re-
covery and Resilience Plan within the scope of the Recovery and Re-
silience Mechanism (MRR) of the European Union (EU), framed in
the Next Generation EU, for the period 2021 - 2026, within project
NewSpacePortugal, with reference 11, and by FCT – Fundação para
a Ciência e a Tecnologia within the PhD grants “2020.06434.BD” and
“2021.06945.BD”.

References

[1] Katharina Eggensperger, Matthias Feurer, Frank Hutter, James
Bergstra, Jasper Snoek, Holger Hoos, and Kevin Leyton-Brown. To-
wards an empirical foundation for assessing bayesian optimization
of hyperparameters. In NIPS workshop on Bayesian Optimization in
Theory and Practice, volume 10, page 3, 2013.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[3] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images, 2009.

[4] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[5] Ke Li and Jitendra Malik. Learning to optimize. arXiv preprint
arXiv:1606.01885, 2016.

[6] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv
preprint arXiv:1708.07747, 2017.

[7] Xueli Xiao, Ming Yan, Sunitha Basodi, Chunyan Ji, and Yi Pan. Ef-
ficient hyperparameter optimization in deep learning using a variable
length genetic algorithm. arXiv preprint arXiv:2006.12703, 2020.

[8] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu.
Practical block-wise neural network architecture generation. In Pro-

2



ceedings of the IEEE conference on computer vision and pattern
recognition, pages 2423–2432, 2018.

3


