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Abstract—The proliferation of explicit material online, par-
ticularly pornography, has emerged as a paramount concern
in our society. While state-of-the-art pornography detection
models already show some promising results, their decision-
making processes are often opaque, raising ethical issues. This
study focuses on uncovering the decision-making process of such
models, specifically fine-tuned convolutional neural networks and
transformer architectures. We compare various explainability
techniques to illuminate the limitations, potential improvements,
and ethical implications of using these algorithms. Results show
that models trained on diverse and dynamic datasets tend
to have more robustness and generalisability when compared
to models trained on static datasets. Additionally, transformer
models demonstrate superior performance and generalisation
compared to convolutional ones. Furthermore, we implemented
a privacy-preserving framework during explanation retrieval,
which contributes to developing secure and ethically sound
biometric applications.

Index Terms—Biometrics, Computer Vision, Deep Learning,
Explainable Artificial Intelligence, Pornography Detection, Pri-
vacy Preservation

I. INTRODUCTION

The Internet’s growing influence has escalated concerns re-
garding the acquisition and dissemination of explicit material,
particularly pornography. While this issue transcends global
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(MRR) of the European Union (EU), framed in the Next Generation EU,
for the period 2021 - 2026, within project NewSpacePortugal, with reference
11. It was also financed by National Funds through the Portuguese funding
agency, Portuguese Foundation for Science and Technology (FCT) through
the Ph.D. Grant “2020.06434.BD”.

Note: This paper contains sexually explicit materials.

legislative frameworks and law enforcement efforts, there is
also a concern related to early exposure to such content, which
can lead to numerous adverse effects (e.g., poor mental health,
sexism, objectification, and increased risk of sexual violence).
Moreover, professionals who analyse this material experience
significant psychological distress [1]. Despite pornography’s
widespread consumption, research on its implications is lim-
ited and often overlooked in mainstream psychology, but with
studies already indicating detrimental effects across cultural
and age groups [2].

Current methods for detecting pornographic content lack
clarity in their inner-functioning processes. Aiming to address
this significant gap, this research pioneers the exploration of
explainability within pornography detection. We investigate
the potential of several deep learning (DL) architectures in
2D pornography detection while giving the first steps toward
the degree of explainability of these methods.

Another critical aspect to consider is the privacy of the
depicted individuals. Advances in generative artificial intel-
ligence and the emergence of deepfakes, among other factors,
have taken this preoccupation to new levels, like in 2017
when a Reddit user created pornographic content featuring
non-consenting female celebrities’ faces1. Given the inher-
ently sensitive nature of this content, especially when we
enter its illegal realm where individuals most certainly did
not consent, this work also touches on the topic of privacy
preservation through face anonymisation by proposing an end-
to-end framework that integrates detection, explainability, and
anonymisation efforts towards an effective, transparent, and

1https://inhope.org/articles/what-is-a-deepfake
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ethical system (see Fig. 1).
We consider that this work makes the following contribu-

tions (see Section III):
1) A 2D pornography detection approach by fine-tuning ex-

isting pre-trained convolutional neural networks (CNNs)
and transformer models, achieving performances on par
with other more complex state-of-the-art strategies;

2) The exploration of various explainability techniques and
discussion on the crucial need for more research into
explainable artificial intelligence (XAI) to ensure safer
and more reliable pornography detection, particularly
given the sensitive nature of this content;

3) An end-to-end approach for detecting pornography and
explaining the decision-making process while safeguard-
ing the privacy of the individuals depicted through face
anonymisation.

The code related to our methods’ implementation is publicly
available in a GitHub repository2.

II. RELATED WORK

A. Pornography Detection

Early research on pornography detection relied on tradi-
tional uni-modal computer vision and machine learning (ML)
methods, such as support vector machines (SVMs), color
histograms, or bag-of-visual-words (BoVW) [3], [4]. Later,
the field moved towards leveraging the potential of multi-
modal approaches, with visual, motion, and audio features
being used to improve the predictive performance of models
available until then [5], [6]. With the advent of DL, there
was a paradigm shift towards automated feature extraction and
classification, starting with CNNs [7]. Further advancements
integrated CNNs with long short-term memory (LSTM) net-
works and explored fusion techniques to combine static and
motion features [8]. More recent works employed advanced
multi-modal and attention-based models to push the detection
boundaries even further, leveraging the strengths of both CNNs
and self-attention mechanisms in capturing complex patterns
in visual and auditory data [9], [10].

B. Explainable Artificial Intelligence

XAI is a crucial research area that addresses complex
models’ often opaque nature. While DL models excel in
various tasks, their decision-making processes are frequently
inscrutable, which is problematic in applications requiring
high trust and accountability. Explainability techniques aim to
clarify these processes, enhancing trust, facilitating debugging,
and ensuring ethical compliance.

One popular practice in the domain of XAI involves defining
taxonomies to organise and distinguish the various explain-
ability methods. However, their intricate and extensive nature
hinders the creation of a universally applicable classification
system; thus, multiple distinct taxonomies coexist. One com-
mon taxonomy relates to a method’s stage as either ante-hoc -
inherently interpretable models, designed with transparency in

2https://github.com/margaridav27/end-to-end-framework-pornography-detection

mind - or post-hoc - the focus of this work, applied to already
trained models [11].

There already exist several post-hoc explainability methods,
such as Integrated Gradients (IG) [12], which calculates
feature contributions by integrating gradients along a path
from a baseline (typically an all-zero image) to the actual
input; DeepLIFT [13], which decomposes the output dif-
ference between an input and a baseline into contributions
from each feature; Layer-wise Relevance Propagation (LRP)
[14], which assigns relevance scores by backpropagating the
model’s output through its layers, using specific rules to redis-
tribute the relevance; and Occlusion [15], a perturbation-based
approach that evaluates feature importance by systematically
masking parts of the input and measuring the effect on the
model’s output.

A major drawback of most XAI methods is their objective
evaluation. Aiming to contribute to the solution of this open
question Hedström et al. [16] proposed four different metric
categories: Complexity (checks the conciseness of explana-
tions), Faithfulness (checks if features deemed relevant affect
model predictions more strongly), Localisation (checks if
the explanatory evidence is located around a given region of
interest), and Robustness (checks if explanations are stable
when subject to input perturbations). Despite the sensitive
nature of pornographic content, to our knowledge, this is
the first work to explore XAI in the context of pornography
detection.

III. METHODOLOGY

A. Data

We used three widely-used and publicly available 3 datasets
in the experimental part of this work: the Pornography-
800 [17], composed of 800 videos (400 non-pornographic and
400 pornographic); the Pornography-2k [6], an extension of
the latter, composed of 2000 videos (1000 non-pornographic
and 1000 pornographic); and the Adult Pornography De-
tection (APD-2M)4 [18], composed of approximately 2 mil-
lion images (1,070,035 pornographic and 1,150,295 non-
pornographic). As a pre-processing step for the video datasets,
we started by extracting frames from videos (20 frames per
video), following two different strategies: the middle extrac-
tion strategy, which focuses on the central portion of the
video, under the assumption that the most relevant content of
a video is likely to be located near its middle; and the evenly-
spaced extraction strategy, which extracts frames at regular
intervals throughout the video. We split the data into train
(80%) and test (20%) partitions, ensuring that frames from
the same video were kept in the same partition. We reserve
10% of the train as the validation partition.

3Access to these datasets, which contain sexually explicit content, is
restricted and requires a formal request. Researchers wishing to use these
data must submit a request to corresponding authors and agree to the legal
terms and conditions governing their use. This ensures that the data will be
used exclusively for research purposes and that researchers fully understand
and comply with all legal obligations.

4https://gvis.unileon.es/datasets-apd-2m/
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B. 2D Pornography Detection

In a binary classification setting (i.e., pornography vs. non-
pornography), we fine-tuned ten CNNs — ResNet (50, 101,
152) [19], DenseNet (121, 169, 201) [20], AlexNet [21], VGG
(16, 19) [22], and MobileNetV2 [23] — and two transformers
— Vision Transformer (ViT) [24] and Data-efficient image
Transformer (DeiT) [25] — pre-trained on ImageNet [26].
We trained every model using the stochastic gradient descent
(SGD) as the optimisation algorithm and the binary cross
entropy as the loss function. Depending on the dataset, the
number of training epochs varied between 5 (APD-2M), 50
(Pornography-2k) or 100 (Pornography-800), and the learning
rate and its scheduler varied between 1× 10−4 with Lambda
(Pornography-800), and 1 × 10−3 with Step (Pornography-
2k, APD-2M). We performed experiments using images from
both frame extraction strategies. All images were resized
to 224 × 224 and normalised with a z-score normalisation
using ImageNet’s mean and standard deviation. Regarding
data augmentation, we applied random cropping, random
rotations, random brightness, contrast, and saturation changes,
and random gamma correction. For the video datasets (i.e.,
Pornography-800 and Pornography-2k), we evaluated every
model on its test set using the two frame extraction (FE)
strategies, middle extraction (M) and evenly-spaced extraction
(E), whereas each transformer was evaluated using only the
latter, both with (Y) and without (N) data augmentation (DA).
We applied the same evaluation strategy to the APD-2M
dataset, except for the FE strategy. Regarding performance
metrics, we computed the Accuracy (Acc.), Precision (Prec.),
Recall (Rec.), and F1-Score (F1) [27]. Additionally, we also
performed cross-dataset testing, to assess the robustness and
generalisability of the models to different data distributions.

C. Explaining Pornography Detection

In this work, we generated visual explanations only for
the correctly predicted cases and tested several methods to
ensure that our interpretation of results did not depend solely
on a single method. For the CNN-based architectures, we
performed experiments with Integrated Gradients (IG) [12],
DeepLIFT [13], Layer-wise Relevance Propagation (LRP) [14]
with different propagation rules, and Occlusion [15]. In ad-
dition, we report results obtained for two different Python
libraries, Captum [28] and Zennit [29]. For the transformer-
based architectures, we used the LRP framework designed
by Chefer et al. [30]. Moreover, we leveraged the Quantus
library [16] to objectively assess the quality of these ex-
planations against three criteria - Faithfulness, Robustness,
and Complexity. Regarding Faithfulness, we generated results
for Faithfulness Correlation (Correl.), Selectivity (Select.),
and Region Perturbation (Reg. Pert.). Regarding Robustness,
we computed Max Sensitivity (Max Sens.), Relative Input
Stability (RIS), and Relative Output Stability (ROS). Finally,
for Complexity, we calculated Sparseness (Sparse.) and Com-
plexity (Complex.).

D. End-to-End Approach to Anonymous Visual Explanations

Fig. 1 presents our proposed framework to generate privacy-
preserving explanations. Given an input image, it is simul-
taneously fed into both the pornography detection and face
detection models. For the pornography detection model, the
image is resized and normalised as required (see Section III).
The model then classifies the image, and an explanation for
this decision is generated using an explainability method. In
parallel, the original version of the image is fed into the face
detection model, which outputs bounding boxes with coor-
dinates of detected faces. Having mapped these coordinates
onto the resized image, the framework blurs the detected
faces in the image and overlays the explanation, preserving
privacy without compromising the model’s explainability. We
argue that this end-to-end process ensures that explanations are
informative and privacy-preserving, addressing the sensitive
nature of pornography detection.

IV. RESULTS AND DISCUSSION

The detection results for the video datasets (Pornography-
800 and Pornography-2k) in Table I, the APD-2M in Table
II, as well as the cross-dataset results in Table III, highlight
the varying performance of CNN and transformer models
depending on the datasets they are fine-tuned on. The best
results by architecture are highlighted in bold, and the best
results overall are underlined. Only the models that achieved
the highest value for the most metrics on at least one of the
datasets are presented. Models trained on diverse and dynamic
datasets like Pornography-2k generalise better across different
datasets, whereas those trained on static datasets like APD-2M
tend to overfit and perform poorly on video datasets. Notably,
all models tested on APD-2M show increased precision despite
performance drops in other metrics, suggesting that APD-2M’s
pornographic instances are more explicit and easier to detect.
This raises questions about the effectiveness of state-of-the-
art models tested only on curated datasets, emphasising the
importance of cross-dataset testing. Furthermore, transformer
models demonstrate superior performance and generalisation
compared to CNN ones. The evenly-spaced frame extraction
strategy is more effective, offering diverse dataset represen-
tation. However, data augmentation’s impact is mixed, some-
times improving specific metrics but also introducing noise.
Overall, the findings underscore the importance of dataset
diversity and careful consideration of training data charac-
teristics for developing robust and generalisable pornography
detection models.

This study also explores the decision-making processes of
the best-performing CNN and transformer models. Fig. 2
illustrates one example of the generated explanations. Our
observational analysis revealed that these models rely on a
broader range of cues beyond explicit content, underscoring
once more the nuanced and complex nature of pornographic
content. Models fine-tuned on Pornography-2k frequently fo-
cused on logos, whereas those fine-tuned on Pornography-
800 did not, suggesting areas for further exploration and
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Fig. 1: End-to-end framework for generating privacy-preserving explanations in the context of pornography detection.

TABLE I: Performance metrics for the best CNN and trans-
former models fine-tuned and tested on Pornography-800 and
Pornography-2k datasets.

Model FE DA Pornography-800 Pornography-2k
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

N 92.19 90.47 94.31 92.35 92.66 91.92 93.63 92.77VGG19 E Y 89.34 86.62 93.06 89.73 93.50 93.42 93.66 93.54

N 96.22 96.19 96.25 96.22 96.03 96.48 95.57 96.03ViT E Y 95.94 95.48 96.44 95.96 96.27 96.64 95.92 96.28

TABLE II: Performance metrics for the best CNN and trans-
former models fine-tuned and tested on the APD-2M dataset.

Model DA Acc. Prec. Rec. F1

ResNet152 Y 99.97 99.96 99.98 99.97

DenseNet201 Y 99.97 99.97 99.97 99.97

N 99.97 99.97 99.97 99.97ViT Y 99.97 99.97 99.97 99.97

improvement. The XAI quantitative evaluation results, pre-
sented in Table IV, show negative faithfulness correlation
values for some methods, indicating that current XAI meth-
ods may not accurately be capturing the models’ behaviour.
The differential selectivity between pornographic and non-
pornographic content, as revealed by density plots, indicates
that current methods effectively identify critical features in
pornographic instances, with a peak on the negative side.
However, robustness metrics highlight challenges in achieving
stable explanations. Overall, the study emphasises the need for
improved XAI methods to accurately capture complex model
behaviours and address the loosely defined concepts inherent
in this type of content.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This study investigates the efficacy of pre-trained CNN and
transformer models in 2D pornography detection, emphasising

the importance of thoughtful dataset selection and fine-tuning.
Transformers, particularly the ViT model, outperformed CNNs
due to their ability to capture long-range dependencies and
contextual information. The study also highlights the limita-
tions of current explainability methods, with the Occlusion
method providing the most human-interpretable explanations
for CNNs and transformer explanations generally being the
most aligned with our human intuition and expectations. The
results underscore the need for improved XAI methods to
better capture the nuanced nature of pornographic content.

B. Future Work

Future research should focus on evaluating models on
more complex video datasets to better assess generalisation
capabilities and performance and on developing methods to
automatically detect and remove confounding elements, such
as logos. Additionally, techniques to minimise the number
of irrelevant or confounding frames in video datasets should
be explored. Further investigation into more explainability
methods is encouraged to improve explanations’ faithfulness,
stability, and human interpretability. Enhancing face detection
tools with well-labelled facial datasets specific to pornography
content and exploring more advanced facial anonymisation
techniques, including the use synthetically generated data, are
also crucial for privacy preservation in this sensitive domain.

REFERENCES

[1] K. C. Seigfried-Spellar, “Assessing the Psychological Well-being and
Coping Mechanisms of Law Enforcement Investigators vs. Digital
Forensic Examiners of Child Pornography Investigations,” Journal
of Police and Criminal Psychology, pp. 215–226, 2018. [Online].
Available: https://doi.org/10.1007/s11896-017-9248-7

[2] J. B. Grubbs and S. W. Kraus, “Pornography Use and Psychological
Science: A Call for Consideration,” Current Directions in Psychological
Science, pp. 68–75, 2021, publisher: SAGE Publications Inc. [Online].
Available: https://doi.org/10.1177/0963721420979594

[3] H. Lee, S. Lee, and T. Nam, “Implementation of high performance
objectionable video classification system,” in 2006 8th International
Conference Advanced Communication Technology, 2006, pp. 4 pp.–962.

Authorized licensed use limited to: Trial User - Inst. de Engen. de Sistemas e Comput. - INESC. Downloaded on December 19,2024 at 14:57:47 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: Performance metrics for the cross-dataset experiments. The values in parentheses represent the percentage change
in performance when the best-performing models are tested on a different dataset compared to their original fine-tuning dataset.

Fine-tuning Dataset Testing Dataset Model FE DA Acc. Prec. Rec. F1

Pornography-800
Pornography-2k VGG19

E N

87.12 (↓ 5.50%) 91.14 (↑ 0.74%) 82.39 (↓ 12.64%) 86.54 (↓ 6.29%)
ViT 93.31 (↓ 3.02%) 95.80 (↓ 0.40%) 90.67 (↓ 5.79%) 93.16 (↓ 3.18%)

APD-2M VGG19 89.55 (↓ 2.86%) 82.51 (↓ 8.80%) 99.42 (↑ 5.42%) 90.18 (↓ 2.35%)
ViT 95.50 (↓ 0.75%) 91.52 (↓ 4.85%) 99.93 (↑ 3.82%) 95.54 (↓ 0.71%)

Pornography-2k
Pornography-800 VGG19

E Y

96.97 (↑ 3.71%) 95.74 (↑ 2.48%) 98.31 (↑ 4.96%) 97.01 (↑ 3.71%)
ViT 98.62 (↑ 2.44%) 98.38 (↑ 1.80%) 98.88 (↑ 3.09%) 98.63 (↑ 2.44%)

APD-2M VGG19 96.27 (↑ 2.96%) 95.82 (↑ 2.57%) 96.47 (↑ 3.00%) 96.14 (↑ 2.78%)
ViT 98.64 (↑ 2.46%) 97.45 (↑ 0.84%) 99.80 (↑ 4.04%) 98.61 (↑ 2.42%)

APD-2M

Pornography-800

ResNet152

-

Y 82.06 (↓ 17.92%) 87.39 (↓ 12.58%) 74.94 (↓ 20.04%) 80.69 (↓ 19.29%)
DenseNet201 78.12 (↓ 21.86%) 85.38 (↓ 14.59%) 67.87 (↓ 32.11%) 75.63 (↓ 24.35%)

ViT N 87.38 (↓ 12.59%) 90.57 (↓ 9.40%) 83.44 (↓ 16.53%) 86.86 (↓ 13.11%)
ViT Y 87.91 (↓ 12.06%) 92.38 (↓ 7.59%) 82.63 (↓ 17.35%) 87.23 (↓ 12.74%)

Pornography-2k

ResNet152 Y 84.27 (↓ 15.70%) 93.18 (↓ 6.78%) 74.13 (↓ 25.86%) 82.57 (↓ 17.41%)
DenseNet201 83.17 (↓ 16.81%) 93.27 (↓ 6.70%) 71.69 (↓ 28.29%) 81.07 (↓ 18.91%)

ViT N 87.12 (↓ 12.85%) 95.00 (↓ 4.97%) 78.51 (↓ 21.47%) 85.97 (↓ 14.00%)
ViT Y 87.22 (↓ 12.75%) 96.32 (↓ 3.65%) 77.54 (↓ 22.44%) 85.92 (↓ 14.05%)

(a) Orig. Image (b) IG — Zennit (c) LRP EGB — Zennit (d) LRP EPF — Zennit (e) Chefer et al. [30]

(f) IG — Captum (g) Captum — DeepLIFT (h) LRP — Captum (i) LRP Comp. — Captum (j) Occlusion — Captum

Fig. 2: Explanations generated for a Pornography-800’s example using all the experimented methods for the best-performing
CNN and transformer models fine-tuned on the said dataset. The colour map (jet) ranges from blue (indicating low attribution),
through green and yellow to red (indicating high attribution).

[4] A. P. B. Lopes, S. E. d. Avila, A. N. Peixoto, R. S. Oliveira, M. d. M.
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