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Isabel Rio-Torto1,2,∗, Tiago Gonçalves1,3,∗, Jaime S. Cardoso1,3 and Luı́s F. Teixeira1,3

∗Equal contribution 1INESC TEC, Campus da FEUP Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
2Departamento de Ciência de Computadores, Faculdade de Ciências, Universidade do Porto,

Rua do Campo Alegre s/n, 4169–007 Porto, Portugal
3Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

ABSTRACT

In fields that rely on high-stakes decisions, such as medicine,
interpretability plays a key role in promoting trust and fa-
cilitating the adoption of deep learning models by the clin-
ical communities. In the medical image analysis domain,
gradient-based class activation maps are the most widely used
explanation methods and the field lacks a more in depth in-
vestigation into inherently interpretable models that focus on
integrating knowledge that ensures the model is learning the
correct rules. A new approach, B-cos networks, for increas-
ing the interpretability of deep neural networks by inducing
weight-input alignment during training showed promising re-
sults on natural image classification. In this work, we study
the suitability of these B-cos networks to the medical domain
by testing them on different use cases (skin lesions, diabetic
retinopathy, cervical cytology, and chest X-rays) and conduct-
ing a thorough evaluation of several explanation quality as-
sessment metrics. We find that, just like in natural image clas-
sification, B-cos explanations yield more localised maps, but
it is not clear that they are better than other methods’ expla-
nations when considering more explanation properties.

Index Terms— b-cos networks, explainable artificial in-
telligence, interpretability, medical image analysis

1. INTRODUCTION

Explainable artificial intelligence (xAI) methods aim to clar-
ify the inner logic of machine learning models, thus promot-
ing transparency, trust and accountability, and guaranteeing
fairness [1]. Generally, these methods can be divided into
three categories: pre-model (e.g. exploratory data analysis
and visualization), in-model (e.g. design of architectures with
domain constraints or regularization techniques [2]), and
post-model (e.g. gradient/saliency/perturbation/attention-
based methods that quantify the relevance of the features
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learned by the model [3, 4]) [5]. Although some authors
argue that in high-stakes decision fields only inherently inter-
pretable models might guarantee trust and transparency [6],
saliency-based methods like GradCAM [3] are still among the
most popular in the general domain and, consequently, in the
medical domain [7], mainly because they are model-agnostic
and do not require retraining the base models. However, given
that the xAI field lacks a gold-standard metric for evaluating
the quality of explanations, it is unclear if other methods
might be better suited, especially to medical applications.

Recently, Böhle et al. [8] proposed the B-cos transform
as a replacement of all linear transforms of a deep neu-
ral network, to induce an alignment between the network’s
weights and task-relevant input patterns. Since a sequence
(network) of such transformations can be reduced to a single
linear transformation, it faithfully summarizes the full model
computations, and, thus, a B-cos network constitutes an in-
herently interpretable model. In this work, we investigate the
application of B-cos networks to the medical domain. Our
contributions are the following:
1. Application of the B-cos network to several medical use

cases (skin lesions, diabetic retinopathy, cervical cytol-
ogy, and chest X-rays) and multiple tasks (multiclass and
multilabel classification), thus expanding the proposal of
the original paper (i.e., binary classification on natural im-
ages);

2. Evaluation of a more complete set of properties of the gen-
erated visual explanations using an independent frame-
work [9];

3. Integration of the B-cos layer into a state-of-the-art cus-
tom model for the medical domain [10];

4. Investigation of the effect of different pretraining strate-
gies on the performance of B-cos networks.
The remainder of this paper is organized as follows: sec-

tion 2 details the employed methodology, section 3 presents
and discusses the obtained results, and section 4 concludes
the paper and suggests future work directions. The code is
available in a GitHub repository1.

1https://github.com/icrto/medical-bcos

20
24

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n 
B

io
m

ed
ic

al
 Im

ag
in

g 
(I

SB
I)

 | 
97

9-
8-

35
03

-1
33

3-
8/

24
/$

31
.0

0 
©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IS
B

I5
65

70
.2

02
4.

10
63

55
06

Authorized licensed use limited to: Trial User - Inst. de Engen. de Sistemas e Comput. - INESC. Downloaded on December 19,2024 at 10:14:05 UTC from IEEE Xplore.  Restrictions apply. 



2. METHODOLOGY

2.1. B-cos Networks

Böhle et al. [8] introduced B-cos networks: the authors pro-
posed the replacement of all the linear transforms of a deep
neural network with the B-cos transform, arguing that this
new module will optimize the network weights to align with
task-relevant input patterns and inherently produce explana-
tory saliency maps given the completely linear nature of the
model.

2.2. Explanation Quality Assessment Metrics

Recognizing the importance of a proper methodology to as-
sess the quality of xAI methods, we decided to evaluate the
approach proposed by Böhle et al. [8] with the framework
developed by Hedström et al. [9]. It consists of a battery of
quantitative measurements of different properties that a good
explanation should have. We consider the following proper-
ties and metrics [9]:

• Faithfulness (do features deemed relevant affect model de-
cisions more strongly?): Selectivity (drop in performance
when features deemed relevant by a xAI method are itera-
tively removed) and Faithfulness Correlation (correlation
between the sum of the subset of randomly replaced attri-
butions and the difference in function output)

• Robustness (are explanations stable when subject to slight
perturbations in the input?): Maximum Sensitivity (maxi-
mum sensitivity of an explanation using Monte Carlo sam-
pling) and Relative Representation Stability (distance be-
tween the internal model representation of an explanation
and its perturbed version)

• Complexity (are explanations concise?): Sparsity (Gini
Index to measure if only highly attributed features are pre-
dictive of the model output) and Complexity (entropy of
the contribution of all features to the total magnitude of
the attribution)

• Localisation (is the explanatory evidence centered around
a given region of interest?): Focus (quantifies the pre-
cision of the explanation by creating mosaics of images
from different classes) and Attribution Localisation (ratio
of positive attributions within a targeted object and the to-
tal positive attributions)

2.3. Pretraining Strategies

In the work by Böhle et al. [8], the authors compared B-
cos architectures with their original counterparts, but only
on ImageNet [11]. Thus, their experiments involved training
both types of networks from scratch. In the medical imag-
ing domain, it is common practice to employ transfer learn-
ing [12]. Therefore, we test different pretraining strategies for
both B-cos and original networks: no pretraining, pretraining

on ImageNet, and initializing B-cos networks from differently
trained baselines.

2.4. B-cos Version of a Custom Medical Imaging Model

To understand the feasibility of integrating the B-cos trans-
form in medical deep learning models, we adopted the work
of Liu et al. [10] as a use case. Their Clinical-Inspired Net-
work (CI-Net) is an attention-based model that aims to mimic
the diagnostic process of clinicians, having achieved state-of-
the-art performance on 6 benchmark databases for skin le-
sion analysis. Contrary to commonly used networks like the
DenseNet [13], the CI-Net contains two branches and a dis-
tinguish module, which learns to discriminate images from
different classes, making it more difficult to integrate the B-
cos transform into this architecture.

2.5. Datasets

Given the diversity of use cases and tasks in the medical
domain, we test B-cos networks on different tasks (multi-
class and multilabel classification), and applications (skin
lesions, diabetic retinopathy, cervical cytology, and chest
X-rays). For skin lesion analysis, we used the ISIC2018
dataset [14, 15], containing 7 classes from melanoma to vas-
cular lesions. For diabetic retinopathy (DR) classification, we
used the APTOS2019 dataset [16], which includes images
with 5 different severity scores, ranging from no DR to pro-
liferative DR. For cervical cytology we used the DTU/Herlev
Pap Smear Database [17], consisting of images of individual
cervical cells in different stages of cervical cancer. For chest
X-ray diagnosis (and multilabel classification), we resorted
to the VinDrCXR [18], which contains 22 labels and corre-
sponding bounding boxes for pathologies like pneumonia or
cardiomegaly.

2.6. Implementation Details

All the models followed the training pipelines described by
Böhle et al. [8], except for CI-Net-based models, which fol-
lowed the training pipeline described by its authors [10]. Re-
garding data processing and augmentation, we resized all the
images to 448 × 448, applied random affine transforms (i.e.,
rotation, translation, scale, and shear) according to specific
literature on each use case (more details in the code), and
normalized the inputs accordingly. All datasets were divided
into stratified train-val-test splits with 20% for test for datasets
without test set, and 10% of the remaining data for validation.
For ISIC2018, we used the official split. We saved the best
models according to the best F1-score on the validation set.

For the explanation quality metrics, we ensured that all
models were being evaluated under the same conditions:
models were evaluated only on the set of correctly predicted
images by all models under test. For the multilabel classifica-
tion scenario (VinDr-CXR), an image is considered correctly
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classified only when all labels are correctly predicted, and
we explain only the label with the lowest index. For datasets
where more than 100 images are correctly predicted by all
models, we evaluate only 100 (for Herlev we evaluated 40
images). More details can be found in the available code.

3. RESULTS AND DISCUSSION

We present our results on the 4 datasets considered in Table 1.
Training. Except for the CI-Net, we focus on DenseNet-

121 [13], since it is a popular architecture among the medical
imaging community and Böhle et al. [8] already showed that
their conclusions hold for different architectures. One impor-
tant aspect to highlight is that B-cos networks take twice as
long to train and require about twice as much memory.

Pretraining strategies. For ISIC and APTOS, we study
the effect of different pretraining strategies. In both cases, the
performance improves on baseline and B-cos models when
ImageNet pretraining is used (e.g. model 3 vs 6 or 4 vs
7). Interestingly, on APTOS2019, transferring knowledge
from the baseline model already adapted to the final domain
worsens the results compared to the B-cos network trained
from scratch (models 13 and 16 vs 12), and, on both datasets,
it falls short of the performance obtained when transferring
knowledge from a B-cos network trained on another domain
(models 5 and 8 vs 7, 13 and 16 vs 15). This shows that it
is preferable to leverage knowledge from another B-cos net-
work that already learned the weight-input alignment pres-
sure, even though on another domain, than to learn from a
non B-cos network (i.e. non-aligned) on the same domain.

Adapting a custom model. Transforming a custom
model into a B-cos network is a straightforward process
given the code made available by Böhle et al. [8]. As ex-
pected, this custom architecture outperforms DenseNet-121
on both baseline and B-cos versions in terms of Localisation.
Interestingly, the baseline CI-Net is not better in terms of
classification than the DenseNet-121, but the B-cos version
achieves the best results (see models 9 and 10).

Explanation quality. We started by applying our evalu-
ation protocol to ImageNet-trained networks made available
by the original authors to verify if the results they reported
held for different properties of explanations (in their work [8],
only the localisation property is evaluated with a metric sim-
ilar to Focus). In 4 out of 7 metrics, their conclusions hold,
i.e. post-hoc methods applied on B-cos networks yield better
explanations and, in turn, the inherent B-cos explanations sur-
pass other methods both on B-cos and non B-cos networks.
On the medical use cases tested, the results vary. For ISIC
and APTOS, the trend in terms of Selectivity is reversed com-
pared to the trend on ImageNet. For Herlev and VinDr-CXR,
explanations obtained from B-cos networks are better than
on the original networks. Still, the inherent B-cos explana-
tions do not surpass other xAI methods (e.g. 4.56 for Grad-
CAM vs 5.04 on VinDr-CXR). In terms of Faithfulness Cor-
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Fig. 1: Comparing explanations from Input×Gradient [19]
(I×G), GradCAM [3] (GC) and B-cos on original (Base.)
and B-cos networks. The colourmap ranges from blue to red,
blue(red) meaning less(more) relevant pixels.

relation, B-cos explanations surpass other methods except on
VinDr-CXR. Regarding robustness, B-cos networks and ex-
planations are, in general, better for RRS but worse for Max-
imum Sensitivity. The same applies to Sparseness and Com-
plexity. Finally, on Localisation metrics, B-cos explanations
surpass the best explanation methods on B-cos and non B-
cos models for 3 out of 4 datasets, but only for ImageNet
pretrained models (c.f. models 6/7, 9/10, 14/15, 19/20). Fur-
ther, on VinDr-CXR, where local bounding box annotations
are available, the Attribution Localisation metric shows the
trend the original authors found. These results indicate that
B-cos explanations are, indeed, generally more focused than
other explanations, which is also corroborated by the qual-
itative results of Fig. 1. Visually, Input×Gradient produces
more sparse maps, while GradCAM and B-cos explanations
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Table 1: Results on model performance and xAI quality assessment obtained for each model across several datasets. For
all models we show the results for the best xAI method. For B-cos networks we also show results for the intrinsic B-cos
explanations. We compare against the following xAI methods: G - Grad, GC - GradCAM [3], I×G - Input×Gradient [19], IG
- Integrated Gradients [20]. For each metric ↑ (↓) means higher (lower) is better. Underlined numbers represent the best result
for non B-cos models on a given dataset, while bold numbers highlight the best B-cos results. DN121 stands for DenseNet-121
and RN18 IN corresponds to an ImageNet trained ResNet-18.

Dataset ID Model Pretraining Task Performance Faithfulness Robustness Complexity Localisation
(B)ACC ↑ F1 ↑ AUC ↑ Select. ↓ Correl. ↑ Sens. ↓ RRS ↓ Sparse. ↑ Complex. ↑ Focus ↑ Att. Loc. ↑

ImageNet [11]

1 DN121 - 72.6 72.3 99.8 7.63 (IG) 0.073 (I×G) 0.545 (GC) 1.62 (G) 0.610 (I×G) 10.5 (GC) 0.722 (GC) -

2 B-cos DN121 - 73.6 73.2 99.2 5.92 (G) 0.138 (IG) 0.994 (GC) 1.22e-4 (G) 0.604 (IG) 10.3 (GC) 0.748 (GC) -
4.85 0.043 1.54 6.92e-5 0.624 10.1 0.851 -

ISIC2018 [14]

3 DN121 - 76.7 62.5 92.4 25.9 (IG) 0.063 (GC) 1.80 (IG) 0.012 (IG) 0.583 (G) 11.6 (IG) 0.707 (GC) -

4 B-cos DN121 - 74.9 57.8 89.1 48.1 (GC) 0.487 (I×G) 0.964 (GC) 4.33e-6 (I×G) 0.612 (I×G) 11.9 (GC) 0.434 (GC) -
91.4 -0.020 1.13 8.87e-8 0.443 11.8 0.585 -

5 B-cos DN121 3 75.5 59.6 90.4 35.7 (IG) 0.297 (I×G) 2.19 (GC) 2.84e-6 (IG) 0.657 (IG) 11.4 (G) 0.539 (GC) -
70.7 0.057 1.94 4.81e-8 0.550 11.6 0.614 -

6 DN121 1 85.6 78.5 97.6 100.3 (IG) 0.288 (GC) 1.32 (G) 0.507 (IG) 0.606 (GC) 11.7 (IG) 0.772 (GC) -

7 B-cos DN121 2 82.3 71.2 93.7 65.6 (IG) 0.114 (I×G) 2.44 (G) 9.31e-7 0.707(GC) 11.5 (I×G) 0.619 (I×G) -
46.6 0.024 6.62 1.70e-5 0.767 10.9 0.796 -

8 B-cos DN121 6 77.1 62.0 90.9 26.8 (GC) 0.170 (I×G) 2.68 (GC) 2.58e-7 (G) 0.631 (I×G) 11.5 (G) 0.668 (GC) -
48.4 0.027 1.62 1.33e-7 0.616 11.5 0.656 -

9 Baseline CI-Net [10] RN18 IN 84.2 74.2 96.3 30.3 (I×G) 0.173 (GC) 2.00 (IG) 0.250 (G) 0.716 (GC) 11.4 (IG) 0.887 (GC) -

10 B-cos CI-Net [10] RN18 IN 82.9 71.4 94.4 52.8 (I×G) 0.144 (IG) 1.40 (G) 1.55e-5 (G) 0.744 (GC) 11.5 (I×G) 0.591 (IG) -
77.3 0.061 3.51 1.10e-5 0.709 11.2 0.889 -

APTOS2019 [16]

11 DN121 - 79.3 57.6 93.0 32.3 (I×G) 0.049 (GC) 1.49 (G) 0.038 (IG) 0.791 (GC) 11.4 (IG) 0.695 (GC) -

12 B-cos DN121 - 79.3 58.6 90.9 88.1 (GC) 0.365 (IG) 29.1 (G) 1.02e-5 (I×G) 0.723 (IG) 11.4 (GC) 0.413 (GC) -
82.3 0.019 18.4 1.91e-5 0.735 11.0 0.585 -

13 B-cos DN121 11 75.7 46.2 88.1 41.5 (I×G) 0.104 (I×G) 1.66 (GC) 1.08e-6 (IG) 0.721 (GC) 11.1 (G) 0.549 (GC) -
51.7 0.027 1.46 7.79e-7 0.723 11.0 0.642 -

14 DN121 1 82.9 66.2 94.7 37.1 (IG) 0.180 (GC) 1.41 (G) 0.156 (G) 0.802 (GC) 11.2 (IG) 0.845 (GC) -

15 B-cos DN121 2 81.3 61.9 92.6 56.1 (I×G) 0.061 (GC) 2.61 (IG) 9.64e-7 (G) 0.784 (GC) 11.2 (I×G) 0.729 (GC) -
69.3 0.034 5.10 1.35e-6 0.826 10.5 0.870 -

16 B-cos DN121 14 78.9 54.8 91.4 51.0 (IG) 0.0578 (GC) 1.61 (I×G) 1.05e-6 (G) 0.792 (GC) 10.8 (I×G) 0.791 (GC) -
53.6 0.046 4.99 1.67e-5 0.808 10.6 0.818 -

Herlev [17]

17 DN121 1 66.2 71.0 94.3 10.1 (I×G) 0.143 (GC) 0.912 (GC) 0.0530 (Grad) 0.553 (I×G) 10.6 (GC) 0.732 (GC) -

18 B-cos DN121 2 63.5 67.1 91.4 8.67 (I×G) 0.124 (GC) 2.03 (IG) 1.29e-6 0.557 (IG) 10.3 (GC) 0.606 (GC) -
9.65 0.144 2.68 2.24e-6 0.572 10.2 0.666 -

VinDr-CXR [18]

19 DN121 1 96.2 28.4 74.8 9.13 (I×G) 0.119 (GC) 1.00 (I×G) 2.97e-4 (I×G) 0.740 (GC) 11.6 (IG) 0.277 (I×G) 0.137 (GC)

20 B-cos DN121 2 95.6 22.7 77.8 4.56 (GC) 0.093 (GC) 2.58 (I×G) 1.18e-6 (IG) 0.763 (GC) 11.5 (G) 0.297 (I×G) 0.237 (GC)
5.04 0.066 13.2 1.60e-5 0.726 11.0 0.301 0.287

are more concentrated around a single area. Furthermore, B-
cos maps tend to have less highly activated pixels than Grad-
CAM’s.

4. CONCLUSION AND FUTURE WORK

This work presents the first study on the applicability and suit-
ability of B-cos networks, a weight-input aligned architecture,
for the medical domain. Although achieving better expla-
nation quality than other xAI methods on ImageNet trained
models, it is not clear that the same happens for the medical
use cases considered, especially when taking into account all
explanation quality assessment metrics. However, B-cos ex-
planations yield more localised saliency maps, a finding that
corroborates the original authors’ conclusions. Given these

results and the slight drop in classification performance, it is
not clear that B-cos networks produce better explanations in
the medical domain. Further work should be devoted to in-
tegrating B-cos networks in different tasks (e.g., image seg-
mentation), studying of different xAI quality assessment met-
rics with more post-hoc methods, and a deep focus on model
optimization or regularization to promote the integration of
clinical-domain knowledge into the models (e.g., integrating
clinical metadata through data fusion techniques, using class
weights in the loss function).

Compliance with Ethical Standards This research study
was conducted retrospectively using human subject data made
available in open access. Ethical approval was *not* required,
as confirmed by the license attached with the open access
data.
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