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Abstract—Presentation attack detection (PAD) methods are
commonly evaluated using metrics based on the predicted labels.
This is a limitation, especially for more elusive methods based on
deep learning which can freely learn the most suitable features.
Though often being more accurate, these models operate as
complex black boxes which makes the inner processes that sustain
their predictions still baffling. Interpretability tools are now being
used to delve deeper into the operation of machine learning
methods, especially artificial networks, to better understand how
they reach their decisions. In this paper, we make a case for
the integration of interpretability tools in the evaluation of PAD.
A simple model for face PAD, based on convolutional neural
networks, was implemented and evaluated using both traditional
metrics (APCER, BPCER and EER) and interpretability tools
(Grad-CAM), using data from the ROSE Youtu video collection.
The results show that interpretability tools can capture more
completely the intricate behavior of the implemented model, and
enable the identification of certain properties that should be
verified by a PAD method that is robust, coherent, meaningful,
and can adequately generalize to unseen data and attacks. One
can conclude that, with further efforts devoted towards higher
objectivity in interpretability, this can be the key to obtain deeper
and more thorough PAD performance evaluation setups.

I. INTRODUCTION

Machine learning (ML) based systems are excelling in most
of the artificial intelligence (AI) fields, outperforming other
methods as well as humans. Undoubtedly, the success of AI
systems is mainly due to: improvements in deep learning (DL)
methodology, availability of large databases, and computa-
tional gains obtained with powerful GPU cards [1], [2].

However, some challenges related to AI remain, especially
the lack of transparency of the algorithms [3]–[5]. After the
euphoria around artificial neural networks and their over-
performing accuracy rates, the research community is starting
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to understand the importance of being made accountable
for what are these outstanding models in fact learning and
deciding upon. The fact is that most of the AI methods still
operate as complex black boxes and the inner processes which
sustain their predictions are still unattainable, making such
methods untrustworthy.

One very illustrative situation was described by La-
puschkin et al. [6]. In this work, the authors observed that for
the detection of the class “horse”, by a deep neural network,
the model assigned relevance to the bottom left corner of the
images, where a careful inspection revealed the presence of
a copyright tag. This is an example of how a ML model can
make a correct decision based on parts of the image that are
arbitrary for the task at hand and overly specific to the data
seen during training. As a result, efforts have been devoted
across several pattern recognition research topics to develop
models that are more interpretable or to use interpretations to
improve the design of the decision algorithms [6], [7].

In particular, biometric recognition (BR) systems and anti-
spoofing techniques may be positively impacted by the use of
interpretability. Most BR systems can be spoofed by presenting
fake or altered samples of the biometric trait at the sensor
by an intruder that is trying to mischievously access the
system. Presentation attack detection (PAD) methods (such as
liveness detection techniques and tamper detection methods)
are intended to detect spoofing attacks. When designing a
PAD method, it can be very rewarding to know more about
the rationale behind its predictions instead of relying on the
output of a black box and risking putting high stakes decisions
on the hands of models that behave like the aforementioned
one. Many advantages will come from studying what a model
learns and which information it uses to decide about a threat.

As in several other pattern recognition tasks, the use of
DL-based PAD methods is increasingly common [8], [9].
This creates a pressing need for the use of interpretability
since the involved processes become more elusive as the
artificial neural networks become deeper. Moreover, traditional
evaluation setups, which adequacy regarding the robustness to
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unseen attacks has been questioned [10]–[12], may not be able
to see in enough depth to capture the model’s behavior.

Traditional metrics quantify the performance solely relying
on predicted labels, without looking into the information used
to reach these predictions. This assessment is quite limited
especially for DL-based approaches. While using handcrafted
features, one has more control over the information used by the
method to perform a decision. However, using DL approaches,
the method is free to learn the most adequate features to
discriminate classes using the training data, which can translate
into the use of largely meaningless or overly specific features
that would hardly generalize.

Considering the aforementioned limitations of the current
way to assess performance in PAD, it is argued in this work
that the evaluation frameworks need to be reformulated to
become more thorough and meaningful. Interpretability, with
its ability to give insights on the operation of complex models
can be the key to achieve this goal.

As such, the aim of this work was the novel analysis of a
face PAD method through the lenses of interpretability. The
insights on PAD performance offered by both traditional met-
rics and the Grad-CAM interpretability tool were compared,
to assess whether the latter would offer more meaningful
information on the PAD model’s performance.

The main contributions of this work are:
1) A pioneer study of interpretability on face PAD methods

regarding a wide range of attacks;
2) The comparison between traditional performance met-

rics and interpretability tools in different evaluation
frameworks (one-attack vs. unseen-attack);

3) An evaluation on robustness to unseen data by analyzing
the explanations produced for the same samples when
seen or not during training (data swap experiment);

4) Formulation of guidelines supporting the need for incor-
porating interpretability in a better and more meaningful
PAD performance assessment.

The remainder of this paper is organized as follows: Sec-
tion II an overview on interpretability; Section III presents the
methodology; Section IV describes the experimental setup;
Section V presents the results and their discussion and in
Section VI some conclusions are drawn from this work.

II. AN OVERVIEW ON INTERPRETABILITY

There is no standard definition regarding interpretability and
explainability in AI. Some authors define these as follows:
Interpretability: an interpretation is the mapping of an abstract
concept (e. g., a predicted class) into a domain that a human
can grasp; Explainability: an explanation is the collection of
features of the interpretable domain, that have contributed for
the produced decision (e. g., classification or regression) [13].
Other authors use the terms interchangeably, regarding both
interpretability and explainability as a three-stage process in
the development cycle of an ML model, with these stages
being named as pre-, in-, and post-model [5].

The efforts of the research community posed on the field
of explainable artificial intelligence (XAI) resulted in the

development of both interpretable models (pre-, and in-model
stage) and explanation methods (post-model stage) over the
past few years [3], [5], [7], [14]–[16]. Nonetheless, most
efforts have been made on these explanation methods, where
the focus is more on understanding an unconstrained and pre-
viously built model than on creating intrinsically interpretable
models. The XAI contributions span over the fundamental
research in machine learning to applications in other fields
such as Medicine [15], [17], [18] or Finance [16]. It is not a
coincidence that the pioneer application fields are ones where
it is of huge importance to foster awareness for the advantages
and the necessity of transparent decision making.

Now that the dust raised by the euphoria around artificial
neural networks and their over-performing accuracy is starting
to settle down, the research community is alert to the reality of
being made accountable for what these outstanding models are
in fact learning and deciding upon. It is agreed that a lot can
be learned by understanding the powerful, black-box-like, deep
learning models which achieve remarkable accuracy but fail to
provide any information about what exactly makes them reach
their predictions. A growing number of works can be found
in the literature devoted to interpret and explain the behavior
of machine learning systems for diverse problems [19]–[22].

For biometrics, Zee et al. [23] combined face recognition
and a face PAD method, and tried to use the interpretations
to enhance the performance of the recognition method. Con-
cerning PAD, Seibol et al. [24] focused on a specific face
spoofing attack (morphing attack) and used the interpretation
of the model decision to improve their training scheme and
therefore the robustness of the PAD system to those attacks.

To the extent of the authors’ knowledge, there is a void in
the literature regarding the analysis of PAD techniques from
the XAI perspective. It is a statement of the present work that
the research in PAD methods may be remarkably impacted by
the outcomes of following this path. The first effects in the
PAD field will be obtained via the reinforcement of trust as
an outcome of model validation as well as the improvement of
PAD models’ robustness through the detection of their hidden
vulnerabilities.

III. METHODOLOGY

A. Presentation Attack Detection Network

A presentation attack detection method receives as input a
biometric trait measurement and returns as output a prediction
of the classification of that measurement as belonging to a
live individual (referred to as a bona fide presentation) or
as being a spoof attempt to intrude the system (in this case
referred to as an attack presentation). In this work, an end-
to-end convolutional neural network was trained and used to
discriminate between bona fide and attack presentations.

The network implemented is an end-to-end convolutional
neural network (CNN). Thus, it is able to freely learn the most
appropriate features for the task at hand. Settings where the
model is not constrained to certain features and has freedom to
learn the most useful representations are the most interesting
for interpretability studies to gain insight of the inner workings
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Fig. 1. Architecture of the implemented PAD model.

of a deep neural network. A relatively simple architecture was
chosen (see Fig. 1), as the emphasis of this work is to study
the interpretability of the face PAD model.

The input to the network is a 224 × 224 RGB image
and the output is a two dimensional softmax layer providing
two probability scores. The network is composed of four
convolutional layers, with three max-pooling layers interposed
between them, and three fully-connected layers. The four
convolutional layers are composed of 32, 32, 64, and 64 filters,
respectively, with size 3×3, unit stride, and padding. The max-
pooling is performed in 2×2 regions with stride 2. The dense
layers are composed of 100, 100, and 2 neurons, respectively.
All convolutional and fully-connected layers are followed by
rectified linear unit (ReLU) activations, except for the last
dense layer, which is followed by softmax activation.

B. Interpretability Method

The Gradient-weighted Class Activation Mapping (Grad-
CAM) [19] method is inspired by the Class Activation Map-
ping (CAM) [25], introduced for the identification of discrim-
inative regions in CNNs without fully-connected layers and
restricted to the architectures that perform global average pool-
ing over convolutional maps immediately before prediction.
Grad-CAM is a generalization of CAM in the sense that it was
designed to be used with any type of CNN architecture. This
algorithm consists of the combination of feature maps using
the gradient signal. Therefore, this gradient information flows
into the last convolutional layer of the CNN, thus, assigning
different importance values to each neuron for a particular
decision of interest. Also, this approach permits to generate
explanations for any layer of the network. Moreover, it is
possible to obtain explanations per class, allowing the analysis
of the model predictions at a class-level.

IV. EXPERIMENTAL SETUP

A. Data and Pre-processing

The data used in this work was drawn from the ROSE-
Youtu Face Liveness Detection Dataset [26] from the Rapid
Object Search Lab. This dataset is composed by 3497 videos
from twenty subjects. Each subject has several “genuine”
videos, where they were directly recorded, and “attack” videos
consisting of worn paper masks, paper photos, and replayed
recordings (see Table I).

The samples from subjects {2, 3, 4, 5, 6} were reserved for
testing, while the data from remaining subjects (15) were used
for training and validations. From each video, frames were
extracted every 5 s and faces were detected using a Multi-Task

TABLE I
CHARACTERISTICS OF THE PRESENTATION ATTACK INSTRUMENTS IN THE

ROSE YOUTU DATASET (N.I. STANDS FOR “NUMBER OF IMAGES”, i.e.,
FRAMES EXTRACTED FROM THE VIDEOS).

Attack Type of presentation attack instruments N.I.
- Genuine (bona fide) 2794

#1 Still printed paper 1136
#2 Quivering printed paper 1188
#3 Video of a Lenovo LCD display 923
#4 Video of a Mac LCD display 1113
#5 Paper mask without cropping 1194
#6 Paper mask with two eyes and mouth cropped out 608
#7 Paper mask with the upper part cut in the middle 1162

Convolutional Neural Network (MTCNN) [27]. Frames were
cropped into square regions around the detected faces, resized
to 224 × 224 and normalised to [0, 1] intensity range. The
prepared dataset included a total of 10 118 frames, of which
7396 composed the training set (1977 genuine and 5419 attack
frames) and 2722 were use for testing (817 genuine and 1905
attack frames).

B. Implementation Details

The PAD model was implemented, trained, and evaluated
using Keras with Tensorflow. The network was trained using
the Adam optimizer, with initial learning rate lr = 0.0001,
a maximum of 150 epochs, and batches with size 8. Early
stopping was used, monitoring the validation loss, with pa-
tience of 20 epochs. For regularization, dropout (0.5) was
used between each pair of consecutive dense layers. Horizontal
flips, rotations with range of 20°, and width and height shifts
with range 0.2 were used for data augmentation.

C. Interpretable Artificial Intelligence Framework

All the experiments were performed using the Keras Visual-
ization Toolkit [28] for Python, which is a library that permits
to visualize and debug a trained Keras model. Currently, it sup-
ports the visualization of class activation maps, saliency maps,
and activation maximization. This framework is important for
the Grad-CAM method, which uses class activation maps. In
these maps, each pixel is assigned a probability value that will
correspond to a specific color, within the range {blue, yellow},
where blue corresponds to the less activated/important pixel
and yellow to the most activated/important pixel. Explanations
presented on the results section always correspond to the
predicted label.

D. Performance Metrics

The metrics used for the evaluation of the face PAD
models are, as defined in [29], the Bona fide Presentation
Classification Error Rate (BPCER): the proportion of bona
fide presentations erroneously classified as attacks; and the
Attack Presentation Classification Error Rate (APCER): the
proportion of attack presentations erroneously classified as
bona fide. The Equal Error Rate (EER) is given by the error
at the operation point where the APCER and PBCER take the
same value.
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TABLE II
PAD PERFORMANCE OF THE MODELS FOR ONE-ATTACK AND

UNSEEN-ATTACK EVALUATION FRAMEWORKS. (EER, APCER, AND
BPCER IN %)

Attack One-Attack Unseen-Attack
EER APCER BPCER EER APCER BPCER

#1 7.29 12.15 3.06 5.90 6.94 4.90
#2 3.62 6.67 1.35 5.55 3.00 10.65
#3 2.79 8.37 0.12 10.38 26.29 4.28
#4 12.66 30.38 1.84 25.34 45.73 3.92
#5 1.61 1.61 1.59 4.84 3.55 7.10
#6 4.46 5.10 1.10 10.19 12.74 7.71
#7 0.73 5.23 0.00 15.49 34.31 7.71

V. RESULTS AND DISCUSSION

The results presented in this section were obtained in
different experiments. Three different evaluation frameworks
were used: Mix-Attack, One-Attack and Unseen-Attack:

a) Mix-Attack: The model is trained and tested with bona
fide samples and all the varieties of attacks available.

b) One-Attack: The model is trained and tested with
bona fide samples and only one type of attack (at a time for
each type of attack). Therefore, the only type of attack shown
to the network during the test phase was already seen in the
training step.

c) Unseen-Attack: The model is trained with all but one
type of attack and tested with this remaining attack, besides
the bona fide samples in train and test steps. Therefore, during
the test phase, the network is evaluated only with one type of
attack that was not present in the training step - referred to as
the unseen attack. Whereas in the training phase, all the other
types of attacks were available.

Additionally, another experiment was done within the One-
Attack evaluation. The Data Swap experiment comprised two
stages: first, the samples of one random subject were present
in the training set and the evaluation was run; and secondly,
the split of data was maintained except for that subject which
was put on the test set and new evaluations were run.

A. Performance of the face PAD method

Even though the focus of the present work is not on the
performance of the face PAD model but on the interpretation of
its decisions, it is important to state that the proposed method
performs at the state-of-the-art methods’ level. One should not
aim to interpret a model that lacks PAD abilities by design,
as this will impair and bias the drawn conclusions, and the
authors had the aim to avoid this.

Table II presents the performance results for One-Attack
and Unseen-Attack frameworks. The Mix-Attack evaluation
framework provided values of EER, APCER and BPCER
equal to 4.90%, 3.41% and 7.40%, respectively. The results
generally worsened from the One-Attack to the Unseen-Attack
scenario as pointed out before in the literature [11]. This can be
seen as a result of the large variability between different types
of attacks. Thus, a practical PAD system must be developed
in a scenario where the types of attacks of the test set are not
seen during the training routine of the models [12].

Attack Sample In Train In Test

Fig. 2. Grad-CAM Explanations for correctly classified attack samples when
a subject is in the train set (2nd column) or in the test set (3rd column). The
rows correspond to One-attack #1 to #7.

One example of the inability to generalize is Attack #7
(upper face mask with eyes cropped out), which the model
finds very challenging to detect when has been trained with the
other types of attacks (APCER goes from 5.27% to 34.31%).
Some exceptions stand out, such as the case of Attack #1
(full face printed photo) in which APCER drops from 12.15%
to 6.94%. In this case, the model probably learns most of
the needed features from the remaining attacks and can, thus,
take advantage of the greater availability of data and achieve
greater performance in the Unseen-Attack settings.
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Attack Sample In Train In Test

Fig. 3. Grad-CAM Explanations for correctly and incorrectly classified attack
samples (TP/FN) in the Swap experiment for One-Attack #1. The identity was
correctly classified when present in the train (2nd column) and misclassified
when presented in testing step (3rd column).

Attack Sample One-Attack Unseen-Attack

Fig. 4. Explanations for correctly classified attack samples (TP) in the One-
Attack (2nd column) or Unseen-Attack (3rd column) frameworks. Each row
corresponds to one specific type of attack, top to bottom: #1, #4, and #7.

B. Swap Experiment

Fig. 2 depicts the Grad-CAM explanations for the data
Swap experiment. No relevant differences are observed in
the explanations, for correct decisions, in one step or the
other. This illustrates a desirable behavior of a PAD method
that can be verified through interpretability: a robust model
should avoid overfitting, using similar information to reach
its decisions, regardless of whether or not the image is seen
during training.

Despite the robustness shown in the previous examples,
these models produced discrepancies and classification mis-
matches between the two stages of the experiment. In Fig. 3
is shown a sample that was correctly classified when present in
the training phase and misclassified when present in the testing
phase. However, in a more thorough investigation, it should be
noted that, in the case of the FN, the classifier is producing an
explanation with significant similarities to the ones produced
for a TN example. Specifically in the first row, second column
of Fig. 5 is shown the bona fide example for the same case,
One-Attack#1. It can be noted that in both situations the
model uses similar information to reach its decision for bona
fide label (parts of the top head contour, region around the

Bona Fide Sample One-Attack Unseen-Attack

Fig. 5. Explanations for correctly classified bona fide samples (TN) for One-
Attack (2nd column) and Unseen-Attack (3rd column). Each row corresponds
to one specific type of attack, top to bottom: #1, 3 and 5.

mouth) thus verifying the aforementioned desirable property.

C. One-Attack vs. Unseen-Attack

In Fig. 4 and Fig. 5 are depicted examples of explanations
obtained for attack samples through the One-Attack and the
Unseen-Attack evaluation frameworks for attack and bona fide
presentations, respectively. It can be observed that comparing
the results of the One-Attack vs. Unseen-Attack frameworks,
the method does not show coherence on the information that
is relevant to making the decision. Despite the fact that the
model is producing correct decisions, this observation raises a
serious red flag about its reliability.

Arguably, a robust PAD model is expected to present
coherence between One-Attack and Unseen-Attack explana-
tions. This coherence is a sign that the model is learning
discriminative features of the bona fide samples and also of
the model’s capability to generalize to new attacks. Attackers
are constantly devising new and improved ways to spoof
biometric systems, and a suitable PAD model should be as
much as possible able to generalize from the known attacks.
At the same time, the knowledge about the bona fide samples
should be determined by their “liveness” characteristics and
not impacted by changes in the attacks that are displayed in
the training. On the other hand, the results in Fig. 5 suggest
that, when trained under the Unseen-Attack settings, the model
does not show a predictable behaviour when learning about
the bona fide samples when the changes in the training are
only about the types of attack samples. The high variability
in the types of attacks in the training in the Unseen-Attack
is apparently making the model prioritizing the learning of
features for the detection of attacks clearly jeopardizing the
learning of liveness features.
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VI. CONCLUSIONS

In this work, interpretability tools were explored to obtain
insights on the inner workings of a deep neural network trained
for presentation attack detection (PAD) in face biometrics. The
present study supports the statement that interpretability does
offer more insight into the intricacies of a PAD deep learning
model, thus advisable to be used for its deeper and more
thorough performance evaluation.

In the studied models, the traditional metrics did not denote
overfitting but through interpretability it was possible to grasp
the limitations of the models to satisfyingly generalize from
the training data. These observations highlight the necessity for
performing model validation using interpretability tools. From
this study, the acquired knowledge should then be used to
interpret the decision making process and therefore anticipate
vulnerabilities and ultimately to adapt the model to overcome
the anticipated vulnerabilities.

Additionally, we were able to identify some “desirable
properties”, assessable using interpretability tools, that should
be verified by PAD methods: (1) explanations for the same
sample should be similar whether or not it is seen during
training (data swap); (2) explanations for the same sample
should be similar whether or not the model is trained to
detect that specific attack (One-Attack vs. Unseen-Attack); (3)
explanations should be similar for different samples with the
same predicted label (intraclass coherence); (4) explanations
should be meaningful (a human would likely use them to
provide the same decision). These are properties that should be
verified by a PAD method that is robust, coherent, meaningful,
and can adequately generalize to unseen data and attacks.

Interpretability is a flourishing research topic, still ridden
with subjectivity and uncertainty. Thus, further efforts should
be devoted to reducing subjectivity in the evaluation of expla-
nations, through objective metrics and procedures [30]. Then,
interpretability will be ready for its application for PAD, which
should be further explored. At last, the standards for evaluation
of PAD methods should be redefined through new objective
metrics using explanations obtained with interpretability tools.
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