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Abstract. When models make wrong predictions, a typical solution is
to acquire more data related to the error: an expensive process known as
active learning. Our supervised classification approach combines active
learning with interpretability so the user can correct such mistakes dur-
ing the model’s training. At the end of each epoch, our training pipeline
shows examples of mistaken cases to the user, using interpretability to
allow the user to visualise which regions of the images are receiving the
model’s attention. The user can then guide the training through a regu-
larisation term in the loss function. This approach differs from previous
works where the user’s role was to annotate unlabelled data since, in this
proposal, the user directly influences the training procedure through the
loss function. Overall, in low-data regimens, the proposed method re-
turned lower loss values in the predictions made for all three datasets
used: 0.61, 0.47, 0.36, when compared with fully automated training
methods using the same amount of data: 0.63, 0.52, 0.41, respectively.
We also observed higher accuracy values in two datasets: 81.14% and
92.58% over the 78.41% and 92.52% seen in fully automated methods.

Keywords: artificial neural networks · active learning · explainable ar-
tificial intelligence · human feedback · interpretability

1 Introduction

The performance of deep neural networks has challenged human performance in
many cases [14]; yet, they can fail spectacularly at surprisingly simple cases [25].
When a neural network makes a wrong prediction, a popular solution is to retrain
it with more related cases. However, this approach may present high optimisation
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Fig. 1: Overview of the proposed pipeline: black lines represent the traditional
model and blue lines represent the proposal.

costs, while obtaining new data may not be trivial nor guarantee better results.
Therefore, to overcome such problems, an alternative solution may be to let the
model efficiently choose the data samples that may positively benefit its training
process. In machine learning (ML) literature, this strategy is known as active
learning [18]. The intuition behind this approach assumes that the model will
react better to a given problem if we provide more examples of that instance
during training. Recently, the advantages of active learning have been studied
and discussed in the literature of deep learning (DL), where the main goal is
to retain the powerful learning capabilities of DL while reducing the cost of
sample annotation [16]. Moreover, instead of relying solely on a curated set of
data samples provided by an active learning approach, one may also integrate
human experts in the training loop and benefit from their domain knowledge, in
line with other Human-in-the-Loop (HITL) work [28, 6]. These frameworks focus
on having the human improve the model [4] (e.g., new human annotations [10],
reinforcement learning policies that mimic human behaviour [15]).

In this work, we propose more direct human participation by having the
human guide the training process itself. The field of explainable artificial intel-
ligence (xAI) (or ML interpretability) generally splits into three main research
lines: pre-, in-, and post-model strategies [7]. Pre-model strategies aim to under-
stand the data before making any ML model (e.g., exploratory data analysis).
In-model strategies focus on inherently interpretable algorithms through rules
or constraints [20]. Post-model strategies aim to produce explanations after the
model’s training (e.g., saliency maps on the image showing the locations that
contributed most to the model’s output [19, 24, 24]). Interestingly, integrating
human users into the optimisation processes of interpretability is already part
of the literature on xAI [9], thus motivating our work and showing that this is a
timely opportunity to contribute towards this research line.

Our proposal, illustrated in Fig. 1, uses post-model explanations to show the
user which parts of the image seem to contribute more to the prediction. The user
interface shows rectangles around the most salient regions, and the user clicks
on the image regions that should not be relevant to the model’s prediction. We
integrate this user input into the loss function as a regularisation term. Our
proposal uses sampling strategies inspired by active learning methods to decide
which images to show the user. This framework aims to promote transparency
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by allowing users to visualise how their feedback impacts the model’s decision
iteratively.

Besides this Introduction, the remainder of this paper is organised as follows:
Section 2 discusses other approaches of HITL that relate to our proposal; Sec-
tion 3 extensively describes our proposal; Section 4 presents the experimental
work; Section 5 shows the obtained results; Section 6 provides a detailed dis-
cussion of the outcomes of our proposal; and Section 7 concludes the paper and
suggests future work directions.

2 Related Work

Liu et al. [11] proposed a reinforcement learning method based on HITL, which
avoids pre-labelling steps and keeps the model upgrading with progressively col-
lected data. Their strategy uses a deep reinforcement active learning method to
guide an agent in selecting training samples by an oracle. In this case, the uncer-
tainty value of each human who picked a training sample works as a reinforce-
ment reward. Uehara et al. [27] developed a novel process for object detection in
satellite images based that uses active learning combined with Gradient-weighted
Class Activation Mapping (Grad-CAM) [17] to select the best images from an
unlabelled pool of samples to train a feature extractor and classifier efficiently.
Using Grad-CAM, this application queries users about the features in a given im-
age, who must select the regions they consider to be related to a given object. Le
et al. [10] proposed a simple and efficient interactive self-annotation framework
to cut down time and human labour costs for video object bounding box anno-
tation. The interactive recurrent annotation relies on a human annotator that
gives feedback to the bounding-box detector. Later, Adhikari and Huttunen [1]
improved on this framework by modifying the role of humans, which transitioned
from performing full annotations to correcting errors.

On autonomous driving, Rajendran et al. [15] use HITL learning for vehi-
cle self-exploration with HITL learning, in two phases. In the first phase (non-
exploratory), the AI system learns from available historical data and the imi-
tation of an oracle. In the second phase (exploratory), the AI system interacts
with the environment, updating its policy through a long short-term memory
network (LSTM), restricted by the anomaly detector trained in the first phase
with the aid of a human annotator. Smailagic et al. [23] innovated the task of
medical image classification by introducing MedAL, a novel way of selecting
relevant samples from an unlabelled image pool. This method maximises the
average distance to all training set examples in a learned feature space. The
main goal is to reduce the amount of data required for state-of-the-art results
by generating an optimal initial training set (i.e., with the most information
about the overall data distribution) without needing a trained model. Regarding
interpretability-guided frameworks, we highlight the works developed by Silva et
al. [22, 21], where they proposed the use of interpretability methods to localise
relevant regions of images, promoting more focused feature representations and,
consequently, improve medical image retrieval; Mahapatra et al. [13], where they
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proposed an interpretability-guided method that enforces that learned features
yield more distinctive and spatially consistent saliency maps for different class
labels of trained models; and, lastly, Mahapatra et al. [12], where they presented
a sample selection approach based on graph analysis to identify informative sam-
ples in a multi-label setting. While this literature served as inspiration, in this
work, we propose a more direct approach at HITL by having the user guide the
model directly through its loss function.

3 Proposal

In our supervised classification proposal, we approach the neural network and
the human as two entities that speak different languages. This way, xAI methods
establish the bridge between these two entities (i.e., a translator). From active
learning and HITL, we can learn the most effective way of mediating this com-
munication and make it more efficient by finding the least amount of information
required to convey any ideas in the conversation. The pipeline is summarised in
Algorithm 1 and includes the following steps that are detailed in the following
subsections:

1. Active learning sampling to find the most egregious model mistakes (line 3).
2. Use xAI to detect which regions of the images are being considered by the

model (line 4).
3. The user feedback is integrated into the loss function (lines 5–6).

Algorithm 1 Pseudocode of our training method.

1: function train(model, images, labels)
2: preds← model(images)
3: images← EntropySample(images)
4: saliencies← xAI(images, preds)
5: Wi,j ← UserInterface(saliencies)
6: loss← CE(preds, labels) +

∑
i,j λWi,j

∂preds
∂imagesi,j

7: end function

3.1 Sampling

Data sampling and querying play a crucial role in the proposed workflow. In
active learning, one may use several traditional uncertainty sampling methods
to identify the most relevant data points in a dataset. The logic behind these
sampling methods is that the data points which are hard to classify must con-
tain relevant information in an active learning workflow. Although several un-
certainty sampling exists (e.g., least confident strategy, margin sampling, and
entropy sampling), Settles [18] concluded that entropy sampling is more suited
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if the objective is to decrease logarithmic loss. Since one of our goals is to min-
imise model overfitting and considering that the solution should generalise for
tasks with any number of classes, we selected entropy sampling as the best option
(x∗

H), as described in Eq. 1:

x∗
H = argmax

x
−
∑
i

Pθ(yi |x) logPθ(yi |x), (1)

where yi is the label for observation i, x is the image, and Pθ is the probability
of yi given x, predicted by the model. Cases with high entropy are relevant since
those are the cases where the model has higher uncertainty of its prediction. We
then select the top-X examples for user feedback.

3.2 Interpretability

In this work, we use DeepLIFT [19] to generate the saliency maps the human
user will assess. This xAI method decomposes the output prediction of a neural
network on a specific input by performing backpropagation of the contribu-
tions [3] of all neurons in the network to every feature of the input signal (i.e.,
the image). It defines importance as a function of differences from a reference
state, where the reference is chosen based on the problem at hand. In this work,
we used the variation DeepLIFT-Rescale, included in the Captum library for
Python programming language [8]. DeepLIFT has two optional, although im-
portant, parameters to be defined: the target and the reference. The target is
related to which class (i.e., label) DeepLIFT will compute the pixel attributions.
As the HITL process should happen in a clean, single-image display, we must
execute DeepLIFT for a single target class. Our proposal aims to fix the model’s
prediction. Hence, it is logical to target the label predicted by the model since
we are basing human interaction on this prediction. The reference refers to the
reference image previously explained. The default reference is a white image of
the same size as the input image. However, Shrikumar et al. [19] recommend a
different strategy for more complex datasets such as the ones used in our ex-
periments: using a blurred version of the input image as the reference to obtain
more well-defined explanations.

3.3 User Feedback

After selecting the most relevant samples, it is necessary to show information
to the annotator (i.e., the user) in a human-understandable manner. Simply
showing the DeepLIFT saliency map to the annotator may be too cryptic, and
overlaying them on top of the original can damage the perception of the image.
To overcome these visualisation issues, rectangles over the regions with higher
attribution scores are identified by dividing the saliency map in a grid (see
Fig. 2). Besides, to allow for a more informed decision, our interface also shows
the ground-truth label of the image, the model’s prediction, and the image index.

The human feedback requires the following steps:
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Fig. 2: Example of a query when training the model on the APTOS2019 dataset.
The interface displays the sampled image, its ground-truth label, the model’s
prediction, and the image index. The users can click on the squared regions they
perceive as less relevant for the classification task. After finishing their selection,
the users can submit it and close the image.

1. The annotator must select which of the presented regions the model should
disregard by clicking the square.

2. When clicked, the rectangle is highlighted, and a second time can deselect
it.

3. After selecting all the desired squares, the user can close the image. We store
this information in the form of a weight tensor Wi,j ∈ {0, 1} related to the
locations of the selected pixels i, j. This tensor is 1 for the pixels chosen by
the user and 0 otherwise.

To backpropagate the errors identified by the user, we penalise the selected
pixels (that is, where Wi,j is 1). A regularisation term is added to the loss
function that penalises the model if the pixels are being used to produce the
model output. That is, the derivative of the output relative to the input ( ∂ŷ

∂xi,j
)

should be zero for those cases. The final loss is described in Eq. 2:

L(ŷ, y) = CE(ŷ, y) + λ
∑
i,j

Wi,j

(
∂ŷ

∂xi,j

)2

, (2)

where λ is a hyper-parameter weighting the new loss term.

4 Experiments

4.1 Data

The three datasets used by the experiments are described below with a summary
in Table 1. ISIC2017 is a skin cancer dataset from the ISIC2017 Challenge [5]5,

5 https://challenge.isic-archive.com/landing/2017/
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Table 1: Datasets used in the experiments.
Dataset N Classes used

ISIC2017 2,000 1 vs 2
APTOS2019 3,600 multiclass (0-4)
NCI 74,820 0 vs 1

that had participants attempt to build automated solutions for the diagnosis of
melanoma from dermoscopic images. We have used Task 3: Disease Classification.
APTOS2019 is a diabetic retinopathy dataset6 originates from a competition
held on Kaggle, where participants were tasked with automating the identifying
of different stages of diabetic retinopathy, to detect indications of blindness.
NCI is a cervical cancer dataset from the American National Cancer Institute
(NCI). Besides the medical image data (i.e., cervigrams), the dataset includes
the patient’s age, HPV test, and histology results. The labels for each cervigram
are related to the neoplasia progression level and divided into the following
categories: normal, CIN1, CIN2, CIN3, and cancer. This dataset is not publicly
available.

4.2 Model Architecture

After preliminary experiments, we decided to use EfficientNet [26] as the model’s
architecture. We initialised this model with the weights from the training on the
ImageNet dataset. In this proposal, the weight tensor Wi,j only stores infor-
mation about the non-augmented version of the images. Hence, to include data
augmentation methods during training, we must compute the backward pass
twice: the first pass computes the ordinary loss for the augmented images, and
the second pass computes our regularisation term using the original image.

4.3 Training Phase

Data Augmentation: We used the following data transformations: vertical and
horizontal flipping, 10% cropping, free 360º rotation, and 10% colour brightness.
We resized all images to 224× 224.

Baseline: We start by training a baseline model for 10 epochs without human
feedback (i.e., we optimised this hyper-parameter through preliminary studies).
From the progression of the entropy values, we noticed that most data points
shared the same values, meaning high entropy sampling would work as random
sampling. By running more epochs, we are letting the model figure out which
data points are harder to classify, and at this point, we can correctly apply high
entropy sampling. The learning rate for the baseline was 1.0×10−4, the optimiser
was adaptive moment estimation (Adam), and the batch size was 4.

6 https://www.kaggle.com/c/aptos2019-blindness-detection
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HITL Models: The HITL models were initialised with the baseline’s weights
and trained for 20 epochs (i.e., 10 with human input and 10 without). The
number of queries was 20, which amounts to roughly 7% of the training data,
and the λ value was 106. To compare the HITL training with automated training,
we trained another model without human feedback for 20 epochs. Both models
used a learning rate of 10−4, Adam as the optimiser, and a batch size of 4.

The code related to the experimental work is publicly available in a GitHub
repository7.

5 Results

Table 2: Results of the proposed framework.
Dataset Method Accuracy Min Loss

ISIC2017
Baseline 10% 85.91 0.52
HITL 10% 83.87 0.47
Baseline 100% 88.59 0.34

APTOS2019
Baseline 10% 78.41 0.63
HITL 10% 81.14 0.61
Baseline 100% 85.11 0.47

NCI

Baseline 0.5% 92.52 0.41
HITL 0.5% 92.58 0.36
Baseline 50% 93.18 0.23
HITL 50% 93.16 0.22

The performance of the proposed pipeline relates to the prediction accuracy
and the minimum loss value achieved by the model. The test scenarios use only a
percentage of the dataset so that the impact of the method is made more visible.
Models trained with the proposed human feedback approach (i.e., HITL) are
contrasted with models trained without human feedback (i.e., baseline). Table 2
shows the raw performance of the methods for the most relevant experiments
performed in this work. Regarding the ISIC2017 and APTOS2019 datasets, we
achieved the best performance when training on 10% of the data. We also present
the baseline results when using 100% of the data. Concerning the NCI dataset,
we achieved the best performance when training on 0.5% of the data. To confirm
the low impact of the HITL method in scenarios with high data availability, we
performed other experiments as well. These tests were performed on 50% of the
data, using models pre-trained on 0.5%, with the HITL method, and compared
with no feedback training on 50% of the dataset. We achieved the lowest min-
loss using the proposed HITL training method in all tests. Regarding accuracy
values, the HITL-trained model outperformed the baseline, in the same task,
on two different occasions. Moreover, models trained with HITL and low data

7 https://github.com/PedroSerran0/ig-human-feedback-nn
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(a) Example of an image
hard to interpret.

(b) DeepLIFT attribu-
tions poorly summarized.

(c) Presence of hair in the
image.

Fig. 3: Example of the problems encountered when annotating query images
while training the HITL approach on the ISIC2017 dataset.

(a) Correct prediction
with unclear attributions.

(b) Darkness hiding im-
portant features.

(c) Possibly wrong label.

Fig. 4: Examples of the problems encountered when annotating query images
while training the HITL approach on the APTOS2019 dataset.

availability could not achieve similar accuracy values to models trained with
100% or 50% of the data. Testing on 100% and 50% of the datasets showed
that using feedback or not achieves similar results, albeit when using feedback,
there is more stochasticity in the training progression. These results suggest a
delay in the model overfitting, resulting, by hypothesis, in lower min-loss values.
Interestingly, we detected a similar pattern in most low-data training scenarios.

6 Discussion

Fig. 3 presents examples of some of the difficulties found when working with the
ISIC2017 dataset. From these, we realise that there are cases where the model
focuses on irrelevant features (e.g., higher attribution values outside the area of
the lesion). Therefore, we argue that these are the situations where the training
of the models may benefit from the HITL framework. One of the drawbacks of
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working with this dataset is the difficulty in understanding the type of features
the model should ignore or pay attention to (e.g., the presence of hair or the
existence of multiple lesions). Naturally, this process would benefit from the aid
of a domain expert. Oppositely to other use cases, the APTOS2019 dataset seems
intuitive to manipulate, regarding the features that the model should ignore (i.e.,
the features that are always present, independently of the stage of the disease,
such as background, fovea, the optic disc, and the blood vessels) or pay attention
(i.e., features that should relate to the stages of the disease) when classifying an
image. Hence, the HITL framework is essential in guiding the model’s training
to focus on the relevant objects.

Nevertheless, as shown in Fig. 4, we also identified some difficulties when
working with the APTOS2019 dataset. We encountered several queries where
the image was too dark (making it very hard to analyse while returning a high
entropy prediction), ambiguity on the features (i.e., the features where the model
should focus were not easy) or on the labels (i.e., model’s prediction made more
sense than the ground-truth annotation), and where the attributions did not
motivate the model’s prediction.

Regarding the NCI dataset, we followed the annotation rationale described
by Albuquerque et al. [2], which uses a Gaussian kernel for regularisation, forcing
the model to focus on a more central part of the images, as most tools are near
the peripheries. Hence, assuming this prior knowledge, the HITL framework
serves as a flexible refined method of this state-of-the-art approach. Besides, as
with APTOS2019, we noted that this dataset was intuitive. However, we also
registered some abnormal behaviour during training (e.g., the model focusing
on irrelevant features such as the instruments or the textual description of the
cervigram). Interestingly, after a few training epochs, when the model started to
focus on relevant features (e.g., the endocervix), we could still register some cases
of abnormal behaviour. We do not provide a figure with the results obtained, as
this dataset is not publicly available.

7 Conclusion

In this work, we proposed a HITL framework that helps comprehend the images
that models find harder to classify and where they seem to fail the most. It also
succeeded in further exploring the requirements for effective interaction between
neural networks and people, and its limitations, with several cases highlighted
during testing. All of this information can play a big part in finding better ways
to improve the training process and fine-tune models while increasing the trans-
parency of neural networks. Experiments performed in three datasets showed
some loss reduction – 0.61, 0.47, and 0.36 for the proposed pipeline versus 0.63,
0.52, and 0.41 for the baseline, respectively, for each dataset.

Further work should be devoted to fine-tuning hyper-parameters such as the
number of training epochs in which we ask humans for feedback, the space be-
tween those same epochs, the number of queries per epoch, the type of sampling,
the threshold for entropy sampling, the number of squares to display, the shape
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of those squares, the optimal learning rate or the optimal λ for the regulari-
sation term in the proposed loss function. Concerning user interface improve-
ments, we aim to explore other geometric shapes besides the current squared
grid. Moreover, we intend to perform additional experiments on clustering meth-
ods, connecting high-value pixels in the prediction explanations or showing the
personalised feature shape to the user. Furthermore, it would be interesting to
extrapolate this methodology into other tasks (e.g., segmentation or object de-
tection since there are multiple outputs).
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