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Abstract

Human epidermal growth factor receptor 2 (HER2) evaluation commonly
requires immunohistochemistry tests on breast cancer tissue, in addition to
the standard haematoxylin and eosin (H&E) staining. Additional costs and
time spent on further testing might be avoided if HER2 overexpression
could be inferred from H&E slides, as a preliminary indication of the IHC
result. We propose a framework that separately processes H&E slide tiles
and outputs an IHC label for the whole slide. The network was trained on
slides from the HER2 Scoring Contest dataset (HER2SC) and tested on
two disjoint subsets of slides from the HER2SC database and the TCGA-
TCIA-BRCA (BRCA) collection. The proposed method attained 83.3%
classification accuracy on the HER2SC test set and 53.8% on the BRCA
test set. Although further efforts should be devoted to achieving improved
performance, the obtained results suggest that it is possible to perform
HER2 overexpression classification on H&E tissue slides.

1 Introduction

Breast cancer (BCa) is the most commonly diagnosed cancer and the lead-
ing cause of cancer-related deaths among women worldwide. However,
over the most recent years, despite the increasing incidence trends, the mor-
tality rate has significantly decreased. Among other factors, this results
from better treatment strategies that can be delineated from the assessment
of histopathological characteristics [1, 2].

The analysis of tissue sections of cancer specimens obtained by biopsy
commonly starts with haematoxylin and eosin (H&E) staining, which
is usually followed by immunohistochemistry (IHC), a more advanced
staining technique used to highlight specific protein receptors, such as the
HER2 [3]. In fact, the overexpression of HER2 is observed in 10%–20%[4]
of BCa cases and has been associated with aggressive clinical behaviour
and poor prognosis [5]. However, these cases have a better response to
targeted therapies and consequent improvements in healing and overall
survival [5].

The current guidelines [6], revised by the American Society of Clini-
cal Oncology/College of American Pathologists (ASCO/CAP), in 2018,
indicate the following scoring criteria for HER2 IHC:

– IHC 0+: no staining or incomplete, faint/barely perceptible mem-
brane staining in 10% of tumour cells or less;

– IHC 1+: incomplete, faint/barely perceptible membrane staining in
more than 10% of tumour cells;

– IHC 2+: weak to moderate complete membrane staining in more
than 10% of tumour cells;

– IHC 3+: circumferential, complete, intense membrane staining in
more than 10% of tumour cells.

Moreover, cases scoring 0+ or 1+ are classified as HER2 negative,
while cases with a score of 3+ are classified as HER2 positive. Cases with
score 2+ are classified as equivocal and are further assessed by in situ
hybridization (ISH), to test for gene amplification [6].

Despite the efficiency of IHC and ISH, the additional cost and time
spent on these tests might be avoided if all the information needed to
infer the HER2 status could be extracted only from H&E slide, as a
preliminary indication of the IHC result. However, to the extent of our
knowledge, the task of predicting HER2 status on H&E slides has not yet
been addressed in the literature, except for a recent challenge1.

1ECDP2020 HEROHE Challenge: https://ecdp2020.grand-challenge.org

2 Methodology

The proposed method (Fig. 1) comprises a CNN, pre-trained for the task of
HER2 scoring of IHC tiles. The pre-trained parameters are then transferred
to the task of HER2 status prediction on H&E tiles, to provide the network
with some knowledge of the tissue structures’ appearance. Individual tile
scores are then combined in a single label for the whole slide.

2.1 Data Preprocessing

For the IHC slides of classes 2+ and 3+, the preprocessing begins with au-
tomatic tissue segmentation with Otsu’s thresholding obtaining the regions
with more intense staining, that correspond to the HER overexpression
areas. For slides of classes 0+ and 1+, the segmentation consists of simple
removal of pixels with the greatest HSV value intensity, corresponding to
background pixels, which do not contain essential information to the prob-
lem. These processes, which are performed at 32× downsampled slides,
return the masks used in tile extraction. Tiles with size 256× 256 are
extracted from the slide with original dimensions (without downsampling),
provided they are completely within the mask region. These tiles are con-
verted from RGB to HSL colour space, of which only the lightness channel
is used. Each tile inherits the class from the respective slide (examples in
Fig. 2a–d), turning the learning task into a weakly-supervised problem.

According to the ASCO/CAP guidelines for IHC evaluation, the diag-
nosis is performed based only on the tumoral region of the slides. Hence,
the preprocessing of H&E slides begins with an automatic invasive tissue
segmentation with the HASHI method [10, 11]. The segmentation mask
is then used to generate H&E tiles (example in Fig. 2e), extracted and
processed according to the abovementioned methodology.

2.2 IHC Tile Scoring & H&E Slide Classification

The CNN architecture for the IHC tile scoring consists of 4 convolutional
layers (16, 32, 64 and 128 filters, respectively, with ReLU activation).
The first layer has a 5×5 kernel, while the remaining have 3×3 kernels.
Each convolutional layer is followed by a pooling layer (a max-pooling
function without overlap, with kernel 2×2). The network is topped with
three fully-connected layers, with 1024, 256, and 4 units, respectively.
The first two have ReLU activation, while the third is followed by softmax
activation for the output of probabilities for each class.

The network parameters pre-trained with IHC tiles were used as ini-
tialization for HER2 status classification on H&E tiles. To achieve a single
prediction per tile instead of four, as it was initially trained for on the IHC
setting, a soft-argmax activation [12] replaces the softmax activation.

The output scores are then sorted from 3+ to 0+ and the tiles corre-
sponding to the 15% highest ones are selected for the aggregation process.
This percentage was chosen to limit the information given to the aggrega-
tion network, while still including and barely exceeding the reference 10%
of tumour area considered in the HER2 scoring guidelines.

The score aggregation is performed by a multilayer perceptron (MLP),
composed of 4 layers, with 256, 128, 64, and 2 neurons, respectively.
All layers are followed by ReLU activation and the last one is followed
by softmax. Since the input dimension M of the MLP is fixed (we set
M = 300 to limit memory cost), for images where 15% of the number
of tiles exceeds M, they are downsampled to M using evenly distributed
tile selection. In cases where 15% of the number of tiles is lower than M,
tiles are extracted with overlap, to guarantee that M tiles can be selected.
The MLP will process these M HER2 scores and output a single HER2
status label for the respective slide.
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Figure 1: The proposed approach for weakly-supervised HER2 status classification on BCa H&E slides.
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Figure 2: Tile examples extracted from IHC 0+ (a), IHC 1+ (b), IHC 2+
(c), IHC 3+ (d), H&E (e) slides. Examples extracted from [7, 8, 9].

3 Data & Training Details

The dataset is composed of subsets of slides from two public datasets:
the HER2 Scoring Contest (HER2SC) training set [7] and the TCGA-
TCIA-BRCA (BRCA) collection [8, 9]. The HER2SC training set (with
available labelling) comprises slides of 52 cases of invasive BCa stained
with both IHC and H&E. The subset from the BRCA dataset includes 54
H&E slides. All slides have the same original resolution and are weakly
annotated with HER2 status (negative/positive) and score (0+, 1+, 2+,
3+), obtained from the corresponding histopathological reports. The
training and validation sets, used for the IHC model parameter tuning and
optimization, have 40 and 12 slides, respectively, corresponding to 7591
tiles per class for training (30,364 tiles total) and 624 tiles per class for
validation (2496 tiles total), to keep a class balance.

The hyperparameters used during training were empirically set to max-
imize performance. The CNN model for IHC tile scoring was randomly
initialized and trained using the Adaptive Moment Estimation (Adam)
optimizer (learning rate of 1× 10−5), to minimize a cross-entropy loss
function, during 200 epochs, with mini-batches of 128 tiles. The soft-
argmax used a parameter β = 1000. The aggregation MLP was also
trained using the Adam optimizer, with learning rate of 10−5 for 150
epochs and mini-batches of 1 slide (consisting of soft-argmax scores of
the respective 300 tiles), saving the best considering validation accuracy.

4 Results and Discussion

After training, the IHC model offered 76.8% accuracy. This indicates
that the model was able to adequately discriminate against the IHC tiles
between the four classes.

On the HER2SC test set, this method achieved a weighted accuracy of
83.3% and a F1-score of 86.7% (see Table 1). Despite the small size of
this test set, the proposed method was able to correctly classify all positive
slides and only misclassify one negative sample as positive. In this context,
one might consider this a desirable behaviour, as false positives are less
impactful than false negatives.

Table 1: H&E HER2 status classification results of the proposed method.
Accuracy F1-score Precision Recall

HER2SC 83.3% 86.7% 89.6% 87.5%
BRCA 53.8% 21.5% 81.2% 31.5%

When tested on the BRCA test set, this method achieved a weighted
accuracy of 53.8% and a F1-score of 21.5% (see Table 1). The method
retains the behaviour presented in HER2SC, preferring to err on the side
of false positives than the alternative. On the other hand, the performance
metrics on BRCA differ considerably from those obtained on HER2SC.
While the method was trained on HER2SC data, which is expected similar
to the test data, the slides of the BRCA have a greater extent of tissue,
generating more tiles per image and impacting the distribution of the scores,
which may influence the method’s behaviour.

The other shortcomings of the method appear to be related to the inva-
sive tumour segmentation and the tile scoring network, which could be im-

proved with additional data and more accurate ground truth. With these ad-
ditional efforts, the proposed method could offer robust weakly-supervised
HER2 classification without IHC information.

5 Conclusions

In this work, a framework is proposed for the weakly supervised classifi-
cation of HER2 overexpression status on H&E BCa slides. The proposed
approach integrates a CNN trained for HER2 scoring of individual H&E
tiles, initialized with the network parameters pre-trained with data from
IHC images. The objective of this initialization is to transfer some domain
knowledge to the final training. The individual scores are aggregated on a
single prediction per slide, returning the HER2 status label.

The evaluation results in single-database (HER2SC) and cross-
database (BRCA) settings show the potential of the proposed method
in standard and more challenging situations, indicating that it is possible
to accurately infer BCa HER2 status solely from H&E slides.

Despite these results, further efforts should be devoted to performance
improvement. Firstly, the training of the tile HER2 scoring CNN and the
aggregation MLP could be integrated into a single optimization process.
On the other hand, the aggregation of individual scores could use tile
locations to take spatial consistency into account. Finally, the knowledge
embedded in the networks through the pre-trained parameters could be
better seized if input H&E tiles could be previously converted into IHC,
for example, using generative adversarial models.

Acknowledgements This work was partially funded by the Project “TAMI: Transparent
Artificial Medical Intelligence” (NORTE-01-0247-FEDER-045905), co-financed by ERDF,
European Regional Fund through the Operational Program for Competitiveness and Interna-
tionalisation (COMPETE 2020), the North Portugal Regional Operational Program (NORTE
2020) and by the Portuguese Foundation for Science and Technology (FCT), under the CMU-
Portugal International Partnership, and also the FCT PhD grants “SFRH/BD/139108/2018”,
“SFRH/BD/137720/2018” and “SFRH/BD/06434/2020”.

References
[1] American Cancer Society. Breast Cancer Facts & Figures 2017–2018. Avail-

able online: http://bit.ly/acs_bcff_1718.
[2] Gandomkar, Z.; Brennan, P.; Mello-Thoms, C. Computer-based image

analysis in breast pathology. J. Pathol. Inform. 2016, 7.
[3] Veta, M.; Pluim, J.P.W.; van Diest, P.J.; Viergever, M.A. Breast Cancer

Histopathology Image Analysis: A Review. IEEE Trans. Biomed. Eng. 2014.
[4] American Society of Clinical Oncology (ASCO). Breast Cancer Guide.

2005–2020. Available online: http://bit.ly/asco_bcg.
[5] Rakha, E.A. et al. Updated UK Recommendations for HER2 assessment in

breast cancer. J. Clin. Pathol. 2015, 68, 93–99.
[6] Wolff, A.C. et al. Human Epidermal Growth Factor Receptor 2 Testing in

Breast Cancer: American Society of Clinical Oncology/College of American
Pathologists Clinical Practice Guideline Focused Update. J. Clin. Oncol.
2018, 36, 2105–2122.

[7] Qaiser, T. et al. HER2 challenge contest: A detailed assessment of automated
HER2 scoring algorithms in whole slide images of breast cancer tissues.
Histopathology 2018, 72, 227–238.

[8] Clark, K. et al. The Cancer Imaging Archive (TCIA): Maintaining and
Operating a Public Information Repository. J. Digit. Imaging 2013, 26, 1045-
1057.

[9] Lingle, W. et al. Radiology Data from The Cancer Genome Atlas Breast
Invasive Carcinoma [TCGA-BRCA] collection. Cancer Imaging Arch. 2016.

[10] Cruz-Roa, A. et al. High-throughput adaptive sampling for whole-slide
histopathology image analysis (HASHI) via convolutional neural networks:
Application to invasive breast cancer detection. PLoS ONE 2018, 13, 1–23.

[11] Cruz-Roa, A. et al. Accurate and reproducible invasive breast cancer detection
in whole-slide images: A Deep Learning approach for quantifying tumor
extent. Sci. Rep. 2017, 7.

[12] Honari, S. et al. Improving landmark localization with semi-supervised
learning. In CVPR, 19–21 June 2018; pp. 1546–1555.

2


