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Concept Detection

The Challenge: identify relevant medical concepts

in a large corpus of radiology images

Approach 1: Multi-label Classification

A straightforward method to solve the task of concept

detection is to use a multi-label classification model,

since a single image can have multiple non-mutually

exclusive concepts associated with it.
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Approach 2: Concept Retrieval

Another approach is to perform concept retrieval: im-

ages and concepts are mapped into a common latent

space (via a contrastive loss) where the images are

expected to be closer to the concepts they contain.
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Approach 3: Semantic Multi-label Classification

This approach consists in training one model per con-

cept semantic type. During inference, each image is

given to every model and the final set of predicted

concepts corresponds to the union of the concepts

predicted by each model.
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Results

Table 1. Results of the concept detection task in terms of F1-score and Sec-
ondary F1-score computed on a subset of manually validated concepts. “Top-
100” and “All” refer to the (sub)set of concepts used to train the models.

Model Concepts
F1-score F1-score Secondary F1-score

(Validation) (Test) (Test)

Multi-label (Frozen Backbone) All 0.3710 - -

Multi-label (Frozen Backbone) Top-100 0.3740 -

Multi-label (Whole Network) Top-100 0.3947 0.430 0.861

Multi-label (2 Phases) Top-100 0.3937 0.431 0.856

Euclidean Retrieval All 0.3367 - -

Euclidean Retrieval Top-100 0.3973 0.368 0.778

Cosine Similarity Retrieval Top-100 0.3184 - -

Ensemble (NaN) Top-100 0.3959 0.433 0.863

Ensemble (OR) Top-100 0.3956 - -

Semantic Top-100 - 0.418 0.838

Task Winners - - 0.451 0.791

Caption Prediction

The Challenge: generate coherent textual descrip-

tions of radiology images

Approach 1: Vision Encoder-Decoder Transformer

This approach combines the original Transformer [4]

architecture with the Vision Transformer (ViT) [2] as

encoder. The model is trained autoregressively for

next token prediction with causal (or unidirectional)

self-attention.
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Approach 2: Modified OSCAR

This architecture is based on the hypothesis that

leveraging the medical concepts of each image might

aid in generating the captions. The OSCAR model was

modified, given that it uses object tags and region fea-

tures obtained from an object detector, annotations

that the provided data does not include. As such, this

modified version receives as input the image divided

into 16×16 patches similarly to what is done in the ViT

model [2]. The model is trained for masked language

modeling with causal self-attention.
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Results

Table 2. Results of the caption prediction task on the test set in terms of BLEU,
ROUGE, METEOR, CIDEr, SPICE, and BERTScore.

Model BLEU ROUGE METEOR CIDEr SPICE BERTScore

Vision Encoder-Decoder (20 epochs) 0.300 0.172 0.073 0.210 0.039 0.604

Vision Encoder-Decoder (40 epochs) 0.306 0.174 0.075 0.205 0.036 0.604

Modified OSCAR 0.230 0.111 0.047 0.088 0.023 0.551

Task Winners 0.483 0.142 0.0928 0.030 0.007 0.561
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