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lterative Segmentation
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DatasetS Dataset: Average Resolution — hig;,,°

BIOMEDICAL DATA AUTONOMOUS DRIVING

Dermoscopic images Retinal fundus images

§

A Y

PH2: 575x766— 7682 RETINA*: 745x782 — 768

Microscopic images

T
D4

SARTlUS: BOWL2018: o BDD100K: 720x1280 — 7682
520x704 — 5122 328x369 — 2562

* Composition of three datasets: CHASE_DB1, DRIVE and STARE 3
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Two-Stage Segmentation
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Training

Data Augmentation

1. Horizontal flip;

2. Contrast/Brightness
modification;

3. Random rotation (only applied

to the biomedical datasets).

U-Net #1 (low res)

U-Net #2 (patches)

1
Resizing (§ + 50/0) * hisize hiize
1 - hi
— l . B
Random Cropping 3 higize Np ¢
Np = {2,4,8,16}

Loss Function

LW,Y) =L @.9) + (1 —D(y,9)), where L; is the
focal loss and D(y, y) is the Dice coefficient
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Learning Rate 0.0001
Epochs 200 1000
Batch Size 64
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Results

3 different evolutions:

€ PH2 and BDD100K
@ SARTORIUS and BOWL2018
€ KITTI and RETINA
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Results

0 PH2 and BDD100K

PH2 registers the best Dice
coefficient in Stage 1 (51);

- BDD100K registers the best Dice
coefficient for Np=4 (Stage 2 - S2);

- All stages from our method register
a higher Dice coefficient when
compared to the baseline (BL).
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Res u ltS Ground Truth
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Example 1: Segmentation results for an image from the BDD100K dataset.

Context | Proposal Implementation m Conclusion



Results

@) SARTORIUS and BOWL2018
- BL registers the best result;

- Poor results from $S1 compromise
S2 result.
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Results

Ground Truth
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Example 2: Segmentation results for an image from the SARTORIUS dataset. 10
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Results

€ «iTTI and RETINA

- Our method performs better than
the baseline only for the bigger
patches (Np={2,4}), worsening for
smaller patches;
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Results

Ground Truth
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Example 3: Segmentation results for an image from the KITTI dataset.
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Results

- Increasing the number of patches,
the number of operations reduces;

- In all cases, our method requires
fewer operations than the baseline.

|

Saves at least 50% and up to 80%
of the total number of operations.
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Conclusion and Future Work

Compared to the baseline model, our method showed:

Use datasets with
higher resolution;

0 Generally similar Dice coefficients;

Use a fine-grain
sliding window.

Q Fewer arithmetic operations. 1

|ldentify regions where the neural
network is undecided and use these
regions with the same scale
(autonomous driving datasets).
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Thank you for your
attention.
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