TWO-STAGE SEGMENTATION IN NEURAL NETWORKS

Diana Teixeira e Silva

up201805131@fe.up.pt

Ricardo Cruz

rpcruz@fe.up.pt

Tiago Gonçalves

tiago.f.goncalves@inesctec.pt

Diogo Carneiro

Diogo.Carneiro@pt.bosch.com

The 15th International Conference on Machine Vision (ICMV 2022) November 18-20, Rome, Italy

Context	1
Proposal	
Iterative Segmentation	2
Datasets	3
Implementation	
Two-Stage Segmentation	4
Training	5
Results	6-13
Conclusion and Future Work	14

Presentation Outline

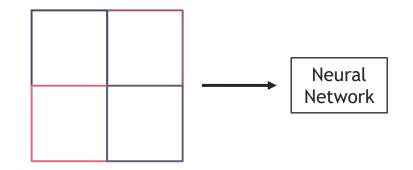
Context

Segmentation of high-resolution images

- \otimes Time Consuming
- \bigotimes Requires a lot of memory

Iterative

Segmentation

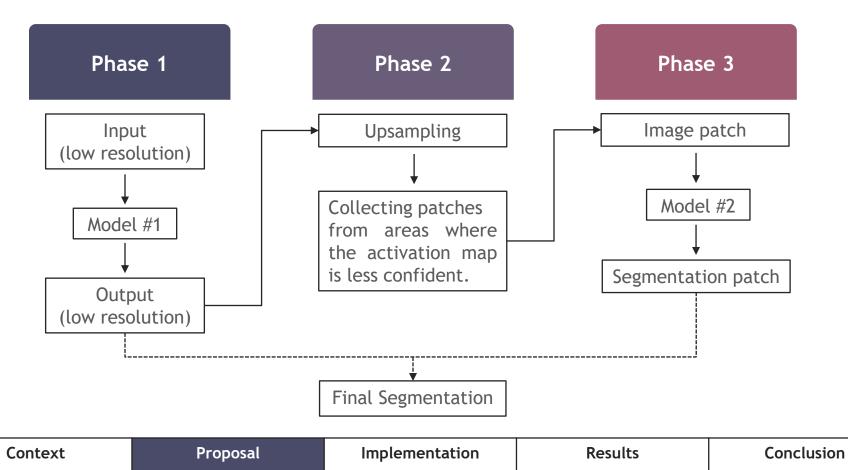


Segmentation of individual patches

- Equal time spent in hard-to- and easy-tosegment regions
- \otimes The boundaries of patches

Context	Proposal	Implementation	Results	Conclusion

Iterative Segmentation



Datasets

BIOMEDIC	BIOMEDICAL DATA				
Dermoscopic images	Retinal fundus images				
PH2: 575×766→ 768 ²	RETINA*: $745 \times 782 \rightarrow 768^2$				
Microscop	pic images				
SARTORIUS: $520 \times 704 \rightarrow 512^2$	BOWL2018: $328 \times 369 \rightarrow 256^2$				

Dataset: Average Resolution $\rightarrow h i_{size}^{2}$

AUTONOMOUS DRIVING

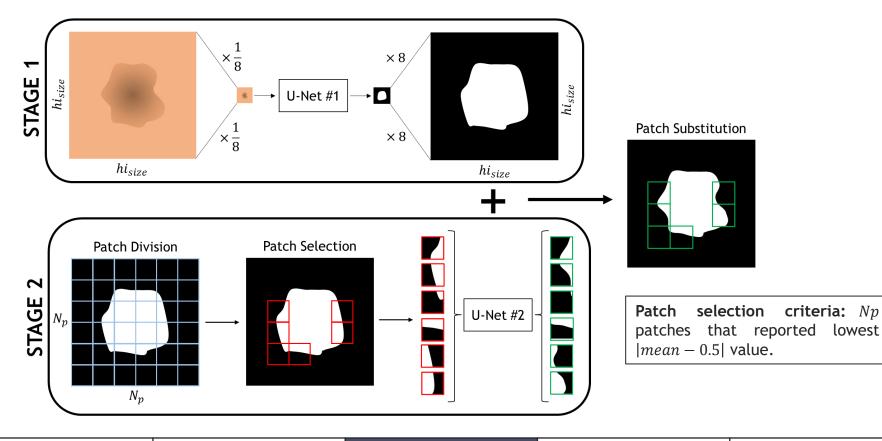
KITTI: $375 \times 1271 \rightarrow 512^2$

BDD100K: 720×1280 \rightarrow 768²

* Composition of three datasets: CHASE_DB1, DRIVE and STARE 3

Context	Proposal	Implementation	Results	Conclusion
-		•		_

Two-Stage Segmentation



Context

Proposal

Implementation

Results

Training

Data Augmentation

- 1. Horizontal flip;
- Contrast/Brightness modification;
- Random rotation (<u>only</u> applied to the biomedical datasets).

	Training		
	U-Net #1 (low res) U-Net #2 (patches)		
Resizing	$\left(\frac{1}{8}+5\%\right)\cdot hi_{size}$	hi _{size}	
Random Cropping	$\frac{1}{8} \cdot hi_{size}$	$\frac{1}{Np} \cdot hi_{size} ,$ $Np = \{2,4,8,16\}$	
Loss Function	$\mathcal{L}(y, \hat{y}) = \mathcal{L}_f(y, \hat{y}) + (1 - D(y, \hat{y})), \text{ where } \mathcal{L}_f \text{ is the focal loss and } D(y, \hat{y}) \text{ is the Dice coefficient}$		
Learning Rate	0.0001		
Epochs	200 1000		
Batch Size	64		

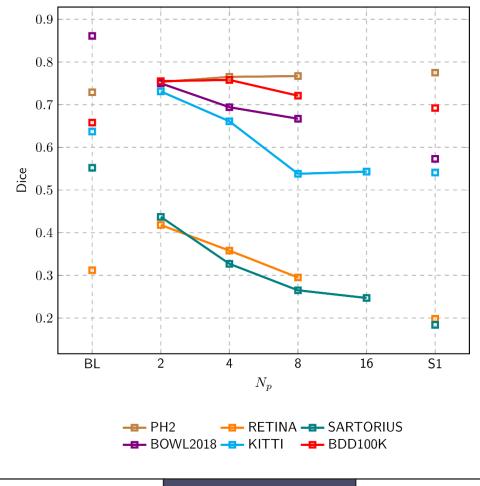
Context	Proposal	Implementation	Results	Conclusion
---------	----------	----------------	---------	------------

3 different evolutions:

1 PH2 and BDD100K

2 SARTORIUS and BOWL2018

3 KITTI and RETINA

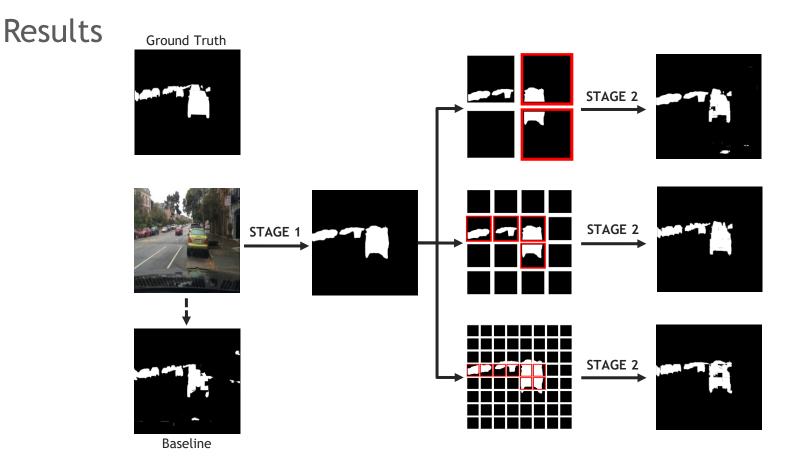


PH2 and BDD100K

- PH2 registers the best Dice coefficient in Stage 1 (S1);
- BDD100K registers the best Dice coefficient for Np=4 (Stage 2 S2);
- All stages from our method register a higher Dice coefficient when compared to the baseline (BL).



-B-BOWL2018 -S- KITTI -B-BDD100K



Example 1: Segmentation results for an image from the BDD100K dataset.

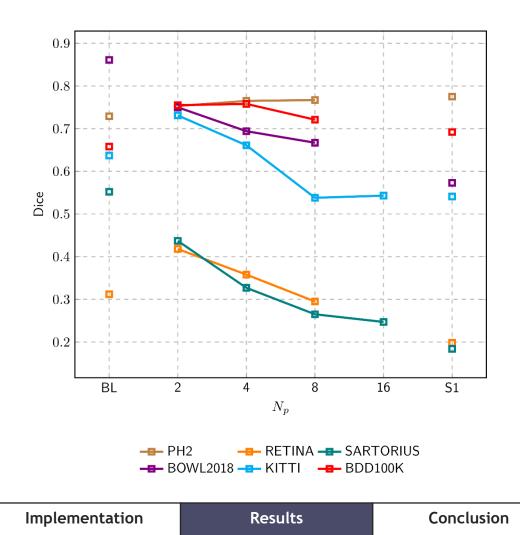
Context	Proposal	Implementation	Results	Conclusion

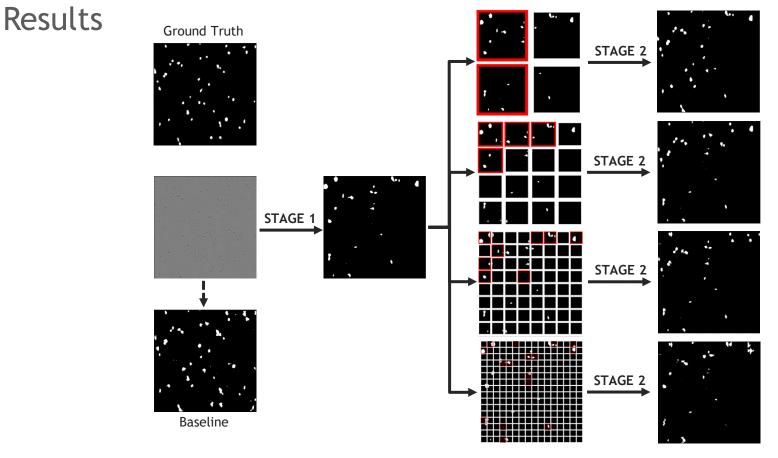
Context

2 SARTORIUS and BOWL2018

- \cdot BL registers the best result;
- \cdot Poor results from S1 compromise S2 result.

Proposal





Example 2: Segmentation results for an image from the SARTORIUS dataset.

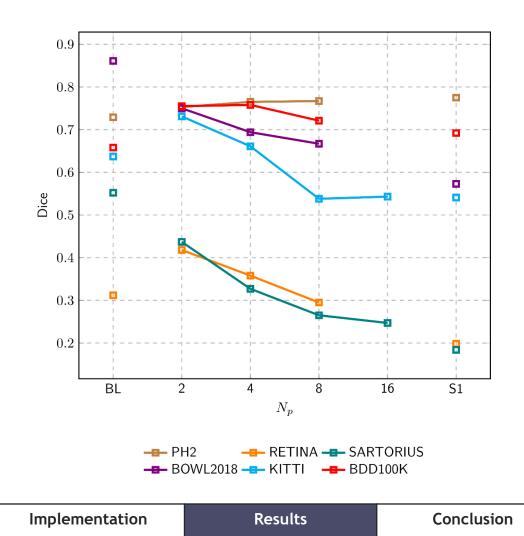
Context	Proposal	Implementation	Results	Conclusion

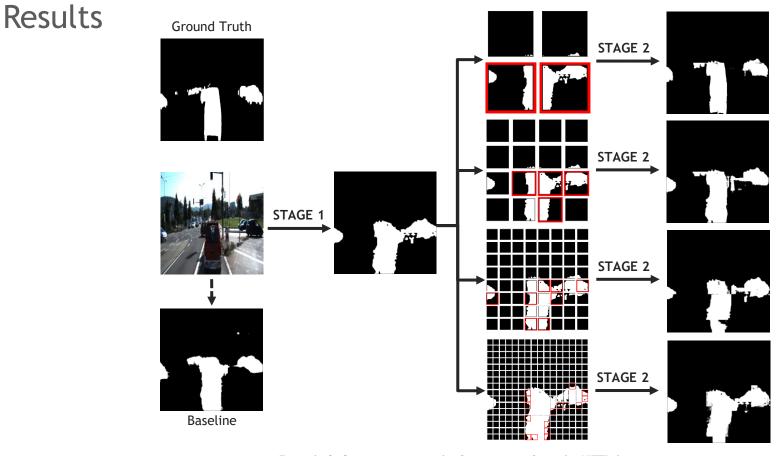
Context

3 KITTI and RETINA

· Our method performs better than the baseline only for the bigger patches ($Np=\{2,4\}$), worsening for smaller patches;

Proposal





Example 3: Segmentation results for an image from the KITTI dataset.

Context	Proposal	Implementation	Results	Conclusion

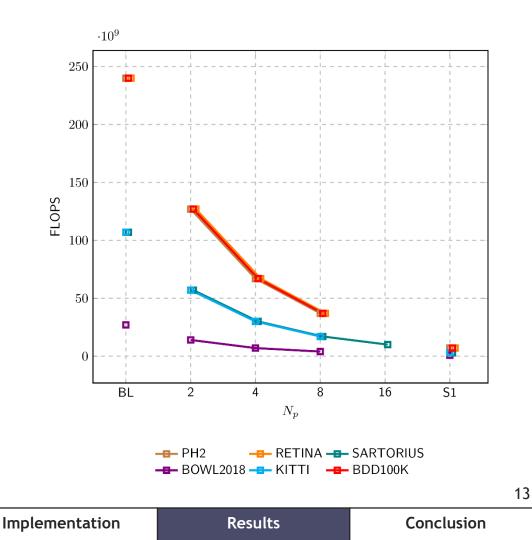
Context

 \cdot Increasing the number of patches, the number of operations reduces;

 \cdot In all cases, our method requires fewer operations than the baseline.

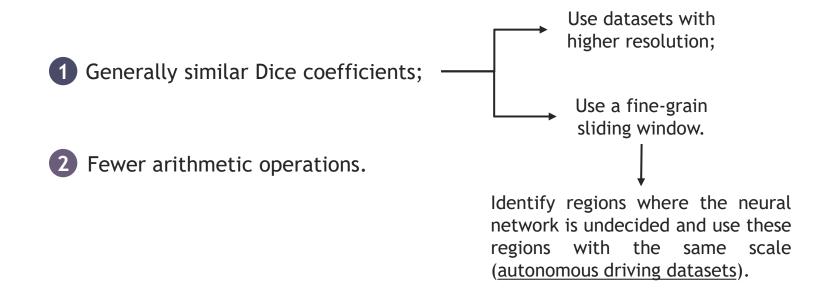
Saves at least 50% and up to 80% of the total number of operations.

Proposal



Conclusion and Future Work

Compared to the baseline model, our method showed:



Context	Proposal	Implementation	Results	Conclusion

Thank you for your attention.

TWO-STAGE SEGMENTATION IN NEURAL **NETWORKS**

Diana Teixeira e Silva

Ricardo Cruz

Tiago Gonçalves

tiago.f.goncalves@inesctec.pt

Diogo Carneiro

Diogo.Carneiro@pt.bosch.com

up201805131@fe.up.pt

rpcruz@fe.up.pt

The 15th International Conference on Machine Vision (ICMV 2022) November 18-20, Rome, Italy

