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Iterative Segmentation

Phase 1 Phase 2 Phase 3

Input 

(low resolution)

Model #1

Output 

(low resolution)
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from areas where

the activation map

is less confident.

Image patch
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Datasets
BIOMEDICAL DATA

Microscopic images

BOWL2018: 

328×369 → 2562
SARTORIUS: 

520×704 → 5122

Dermoscopic images Retinal fundus images

PH2: 575×766→ 7682 RETINA*: 745×782 → 7682

AUTONOMOUS DRIVING

KITTI: 375×1271 → 5122

BDD100K: 720×1280 → 7682

Dataset: Average Resolution → ℎ𝑖𝑠𝑖𝑧𝑒
2
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* Composition of three datasets: CHASE_DB1, DRIVE and STARE



Two-Stage Segmentation

Patch selection criteria: 𝑁𝑝
patches that reported lowest

𝑚𝑒𝑎𝑛 − 0.5 value.
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Training

Data Augmentation

1. Horizontal flip;

2. Contrast/Brightness 

modification;

3. Random rotation (only applied 

to the biomedical datasets).

Training

U-Net #1 (low res) U-Net #2 (patches)

Resizing
1

8
+ 5% ∙ ℎ𝑖𝑠𝑖𝑧𝑒 ℎ𝑖𝑠𝑖𝑧𝑒

Random Cropping
1

8
∙ ℎ𝑖𝑠𝑖𝑧𝑒

1

𝑁𝑝
∙ ℎ𝑖𝑠𝑖𝑧𝑒 ,

𝑁𝑝 = 2,4,8,16

Loss Function
ℒ(𝑦, ො𝑦) = ℒ𝑓 (𝑦, ො𝑦) + (1 − 𝐷(𝑦, ො𝑦)), where ℒ𝑓 is the 

focal loss and 𝐷 𝑦, ො𝑦 is the Dice coefficient

Learning Rate 0.0001

Epochs 200 1000

Batch Size 64
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Results

3 different evolutions:

PH2 and BDD100K

SARTORIUS and BOWL2018

KITTI and RETINA 

1

2

3
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Results

PH2 and BDD100K

· PH2 registers the best Dice

coefficient in Stage 1 (S1);

· BDD100K registers the best Dice

coefficient for Np=4 (Stage 2 – S2);

· All stages from our method register

a higher Dice coefficient when

compared to the baseline (BL).

1
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Results
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Example 1: Segmentation results for an image from the BDD100K dataset.

STAGE 2

STAGE 2

STAGE 2

STAGE 1

Ground Truth

Baseline
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SARTORIUS and BOWL2018

· BL registers the best result;

· Poor results from S1 compromise 

S2 result.
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Results
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Example 2: Segmentation results for an image from the SARTORIUS dataset.

Ground Truth

STAGE 1

Baseline

STAGE 2

STAGE 2

STAGE 2

STAGE 2
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KITTI and RETINA 

· Our method performs better than

the baseline only for the bigger

patches (𝑁𝑝={2,4}), worsening for

smaller patches;
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Results
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Example 3: Segmentation results for an image from the KITTI dataset.

STAGE 2

STAGE 2

STAGE 2

STAGE 1

STAGE 2

Ground Truth

Baseline
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Results
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· Increasing the number of patches,

the number of operations reduces;

· In all cases, our method requires

fewer operations than the baseline.

Saves at least 50% and up to 80%

of the total number of operations.
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Conclusion and Future Work

Context Proposal Implementation Results Conclusion

Compared to the baseline model, our method showed:

Generally similar Dice coefficients;1

Fewer arithmetic operations.2

Use datasets with 

higher resolution;

Use a fine-grain 

sliding window.

Identify regions where the neural

network is undecided and use these

regions with the same scale

(autonomous driving datasets).
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