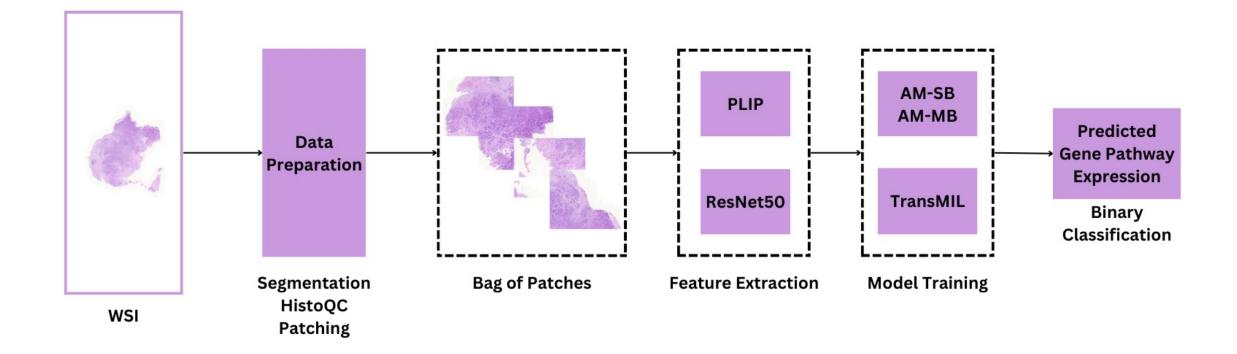

Deep Learning-based Prediction of Breast Cancer Tumor and Immune Phenotypes from Histopathology

Imageomics-AAAI-24 Vancouver, BC, Canada February 26, 2024

<u>**Tiago Gonçalves**</u>, Dagoberto Pulido-Arias, Julian Willett, Katharina V. Hoebel, Mason C. Cleveland, Syed Rakin Ahmed, Elizabeth Gerstner, Jayashree Kalpathy-Cramer, Jaime S. Cardoso, Christopher P. Bridge\*, Albert E. Kim\*



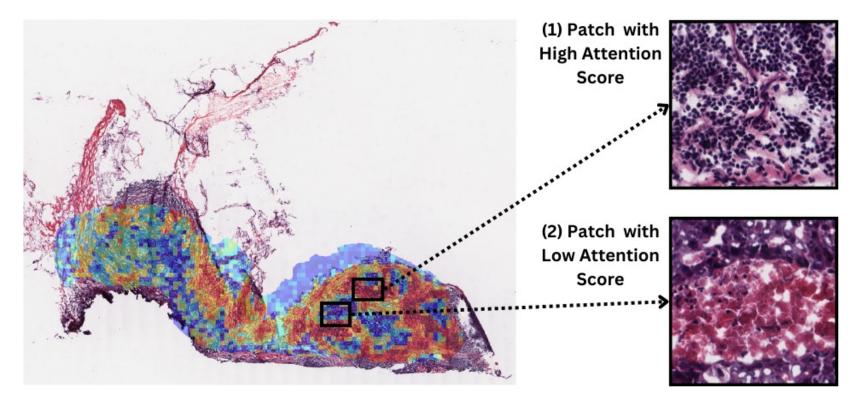



# Tumor and immune phenotypes from histopathology: context and motivation

- Tumor and immune phenotypes are strongly linked with therapeutic efficacy and risk of metastasis in breast cancer
- However, to date, **there is not a widely available method** to reliably characterize these facets of the tumor microenvironment (TME)
- Given this unmet clinical need, we applied multiple instance learning (MIL) algorithms to assess activity of clinically relevant gene expression pathways from the hematoxylin and eosin (H&E) slide of primary breast tumors

### **Our proposed pipeline**




## Model architecture is not important for the performance, but the feature extraction strategy is

| Task                                | Architecture & Features |                        |                 |
|-------------------------------------|-------------------------|------------------------|-----------------|
|                                     | AM-SB                   | AM-MB                  | TransMIL        |
|                                     | ResNet50 / PLIP         | ResNet50 /PLIP         | ResNet50 / PLIP |
| B-cell proliferation                | 0.6974 / <b>0.7755</b>  | <b>0.7322</b> / 0.7735 | 0.6960 / 0.7673 |
| T-cell mediated cytotoxicity        | 0.7149 / 0.7703         | 0.7564 / 0.7770        | 0.7223 / 0.7196 |
| Angiogenesis                        | 0.7042 / <b>0.7435</b>  | <b>0.7053</b> / 0.7213 | 0.7019 / 0.7214 |
| Epithelial-mesenchymal transition   | <b>0.8110</b> / 0.7848  | 0.8023 / <b>0.8082</b> | 0.7545 / 0.7934 |
| Fatty acid metabolism               | 0.6323 / 0.6030         | 0.6294 / 0.5920        | 0.5258 / 0.5634 |
| Glycolysis                          | <b>0.7996</b> / 0.8118  | 0.7954 / <b>0.8330</b> | 0.7834 / 0.8045 |
| Oxidative phosphorylation           | 0.6894 / 0.7145         | 0.6926 / 0.7332        | 0.6699 / 0.6826 |
| Immunosuppression                   | 0.7996 / 0.8458         | 0.8133 / 0.8542        | 0.7572/0.8113   |
| Antigen processing and presentation | 0.7450 / 0.7806         | 0.7599 / 0.7924        | 0.7503 / 0.7342 |
| Cell cycle                          | 0.7768 / <b>0.7939</b>  | <b>0.7809</b> / 0.7852 | 0.7121 / 0.7229 |

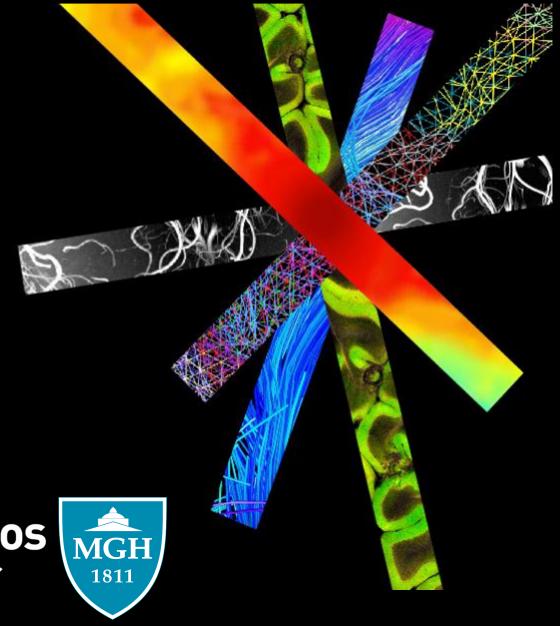
1. While the AM-SB and AM-MB model architectures outperform TransMIL prediction of all gene expression tasks, the increase in performance was marginal

2. Models trained with PLIP-derived features generally perform better

# Do we have any insight about what the model might be learning?



#### Attention map obtained using the AM-SB architecture for a WSI predicted to have a high-degree of T-cell mediated cytotoxicity


- (1) Illustrates abundant tumor-infiltrating lymphocytes without tumor cells, which are suggestive of high immune activity
- (2) Demonstrated areas of tumor necrosis and minimal lymphocytes, consistent with low immune activity

Deep Learning-based Prediction of Breast Cancer Tumor and Immune Phenotypes from Histopathology

Imageomics-AAAI-24 Vancouver, BC, Canada February 26, 2024

<u>**Tiago Gonçalves**</u>, Dagoberto Pulido-Arias, Julian Willett, Katharina V. Hoebel, Mason C. Cleveland, Syed Rakin Ahmed, Elizabeth Gerstner, Jayashree Kalpathy-Cramer, Jaime S. Cardoso, Christopher P. Bridge\*, Albert E. Kim\*



