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Luger and Stubblefield consider Al as “ that is concerned with the
of gl

Let us highlight some interesting dates in the history of Al:
* 1950: Alan Turing published “Computer Machinery and Intelligence” which proposed The Turing Test[?]

 1955: John McCarthy held a workshop at Dartmouth on “artificial intelligence” which is the first use of
the term!3!

 1997:1BM’s Deep Blue beat the Chess World Champion Garry Kasparovi4l
* 2016: Google’s DeepMind AlphaGo beat the Go World Champion Lee Sedol®!

* 2020: Google’s DeepMind published a paper suggesting that “its model was able to spot cancer in de-
identified screening mammograms with fewer false positives and false negatives than experts”®l

Sources: [1] ,[2] , [3] , [4] , [5] , [6]



https://openlibrary.org/books/OL1722953M/Artificial_intelligence
https://academic.oup.com/mind/article/LIX/236/433/986238
https://computerhistory.org/profile/john-mccarthy/
https://theconversation.com/twenty-years-on-from-deep-blue-vs-kasparov-how-a-chess-match-started-the-big-data-revolution-76882
https://deepmind.google/research/projects/alphago/
https://www.nature.com/articles/s41586-019-1799-6
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We are entering a new Era of Al

2020’s [~} Generative AI (Gen AI)

Deep learning models (foundation models) that
create original content

Sources: |BM



https://www.ibm.com/think/topics/artificial-intelligence
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We have more computational power than ever

The development of powerful computer processing units (CPUs) and the leveraging of the graphical
processing units (GPUs) for computation allowed the training of deep and complex algorithms in
“human time”[1.2]
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Sources: [1] Towards Data Science, [2] NVIDIA



https://towardsdatascience.com/a-weird-introduction-to-deep-learning-7828803693b0
https://www.nvidia.com/en-us/
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DEMYSTIFIYING DATA UNITS
B familiar 'bit’ or ‘megaby ‘ement are more frequently
explain the masses of data

Unit
The exponential growth of data is undisputed, but the numbers behind this explosion - fuelled by internet of things and __
N X . yt 8 bit: 1 byte
the use of connected devcies - are hard to comprehend, particularly when looked at in the context of one day . of data will be created every day by 2025
o
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Sources: Raconteur



https://www.raconteur.net/infographics/a-day-in-data/
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How do machines
learn?

Algorithms and how they work

Lo et
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In the beginning, we had rules based on expert
knowledge

We used “if-then-else” logic to build programs that simulated the decision-making process of
a human expert

Program
S—— Output
—
—_—
Data



https://github.com/TiagoFilipeSousaGoncalves/tiagofilipesousagoncalves.github.io/blob/master/talks/appendix/cardoso2018.pdf
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Now, we learn the rules directly from the data

We employ a data-driven design: the system produces a program that implements a function
that assigns the prediction to any observation

Data
Program

Output



https://github.com/TiagoFilipeSousaGoncalves/tiagofilipesousagoncalves.github.io/blob/master/talks/appendix/cardoso2018.pdf
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Supervised
Learning

Regression

supervised

SR Unsupervised

Learning LB

Clustering

Sources: Jaime S. Cardoso (2018)

Reinforcement
Learning



https://github.com/TiagoFilipeSousaGoncalves/tiagofilipesousagoncalves.github.io/blob/master/talks/appendix/cardoso2018.pdf
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What if we had to build a computer-aided diagnosis
system to detect COVID-19?

We would start by understanding the datal'l:

COVID-19 Normal



https://www.kaggle.com/datasets/radimkzl/opencv-x-ray-covid19-and-pneumonia/data
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What if we had to build a computer-aided diagnosis
system to detect COVID-19?

Afterwards, we would train an algorithm:

Traditional machine learning

@@éw— X@L,JLL

Raw input Feature engineering Features Traditional ML model Output COVID-19 or Normal?

Deep learning
. o &
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Raw input DNN based representation leaming Output

f

Optimise an objective function
(usually, minimising an error function)

Sources: Gunning (2019)


https://sites.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf
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What if we had to build a computer-aided diagnosis

system to detect COVID-19?

Finally, we would deploy the model:

Al Model

Clinical
Decision

Evaluate the model, from

time to time



https://inesctec.medium.com/explainable-arti%EF%AC%81cial-intelligence-unveiling-what-machines-are-learning-91b96a63a07a

Epilogue

Future trends and open questions
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Can we really understand what models are learning?

- Itis not trivial to assure that models are learning features that are relevant for that domain
(i.e., black box behaviour)

- Remember: machine learning models are good at extracting correlations!

* Why did you do that?

* Why not something else?
Learning This is a cat * When do you succeed?
Process (p=.93) * When do you fail?

* When can | trust you?

* How do | correct an error?

Training Learned Output User with
Data Function a Task

l * | understand why
- N o n This is a cat: + 1 understand why not
B e"Y ity '::;Z;‘:;’sw“'s'(e"s' « | know when you'll succeed
| AN . . S
Learning FIFE FEEP | -thas this feature: | know when you'll fail
Process 4595 ok | + | know when to trust you
i L LI LS « | know why you erred

Training Explainable  Explanation User with
Data Model Interface a Task

Sources: Gunning (2019)


https://sites.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf
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The Responsible Al framework is trying to bring
more understandability to algorithms

Responsible Al is a framework that guides how we should address the challenges around Al
from both an ethical, technical and legal point of view!']

We must resolve ambiguity for where responsibility lies if something goes wrong!

This framework relies on fundamental principles(?l:
- Accountability

Explainable

Justifiable Monitorable

- Interpretability

. Responsible
- Fairness Al
Unbiased es Reproducible
- Safety
i P I’iva Cy Human- Secure

centered

Sources: [1] Iech Target, [2] Towards Data Science


https://searchenterpriseai.techtarget.com/definition/responsible-AI
https://towardsdatascience.com/what-is-responsible-ai-548743369729

|||||||||||||||||||||
EEEEEEEEEEEEEEEEEEEEEEEE
TECNOLOGIA E CIENCIA

Learning How Machines Learn: An
Introduction to Artificial Intelligence and
Machine Learning

B’ INESC TEC

Tertdlia | Universidade Catélica Portuguesa — Catélica Porto Business School
July 7, 2025 | Porto, Portugal

Tiago Filipe Sousa Goncgalves (tiago.f.goncalves@inesctec.pt)

Lo et



mailto:tiago.f.goncalves@inesctec.pt

