
### **Responsible AI - Lecture 2**

**TAIA - Advanced Topics on Artificial Intelligence** 

Tiago Filipe Sousa Gonçalves

tiago.f.goncalves@inesctec.pt | tiagofs@fe.up.pt





INSTITUTE FOR SYSTEMS
AND COMPUTER ENGINEERING,
TECHNOLOGY AND SCIENCE

### Outline

- 1. Principles of Responsible AI (beyond Interpretability)
- 2. Law meets Al: Friend or Foe?
- 3. Take-home messages and further readings

# 1. Principles of Responsible AI (beyond Interpretability)

### Responsible Al relies on fundamental principles

- **Responsible AI** is a framework that guides how we should address the challenges around artificial intelligence from both an **ethical**, **technical** and **legal** point of view<sup>[1]</sup>
  - We must resolve ambiguity for where responsibility lies if something goes wrong!
- This framework relies on fundamental principles<sup>[2]</sup>:
  - Accountability
  - Interpretability
  - Fairness
  - Safety
  - Privacy

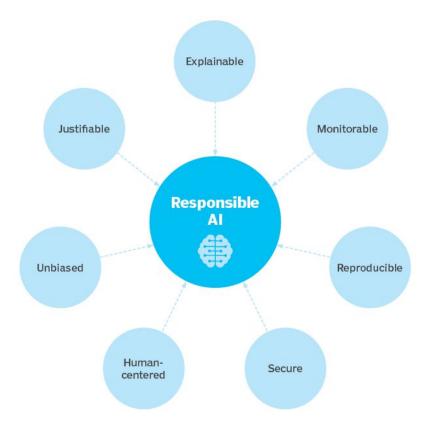



Figure - Responsible AI (Image from [1])

### Accountability: who will take the responsibility?[1]

- People should be accountable for Al systems<sup>[1]</sup>
  - This principle is the baseline, hence, all the other principles can be seen as branches
- Some important ideas are:
  - o Implement and use a human-centered design approach<sup>[2]</sup>
  - Identify multiple metrics to assess training and monitoring, and ensure that these
    metrics are appropriate for the context and goals of our system<sup>[2]</sup>
  - Examine our **raw data** (e.g, missing values, incorrect labels, biases, feature redundancy)<sup>[2]</sup>
  - Understand the limitations of our databases and models<sup>[2]</sup>
  - Learn best practices from software quality engineering to make sure the AI system is working as intended and can be trusted<sup>[2]</sup>
  - Continue to test, monitor and update the system after deployment<sup>[2]</sup>

#### Fairness: how to deal with bias?<sup>[1]</sup>

- Al models learn from existing data collected from the real world, and so an accurate model may learn or even amplify problematic pre-existing biases in the data based on sensitive characteristics<sup>[2]</sup>
- Regarding this issue, we should:
  - Interact with social scientists, humanists, and other relevant experts for our product to understand and account for various perspectives<sup>[2]</sup>
  - Consider how the technology and its development over time will impact different use cases (e.g., what outcomes does this technology enable)<sup>[2]</sup>
  - Assess fairness in our datasets (e.g., identifying representation and corresponding limitations)<sup>[2]</sup>
  - Check the system for **unfair biases**<sup>[2]</sup>
  - Analyse the performance of the system, taking into account the different metrics we've
    defined<sup>[2]</sup>

### Safety: achieving reliable and safe Al systems<sup>[1]</sup>

- Safety and security intend to ensure that AI systems behave as intended, regardless of how attackers try to interfere<sup>[2]</sup>
- Regarding this issue, we should:
  - Consider if there are incentives to make the system misbehave<sup>[2]</sup>
  - Identify what unintended consequences would result from the system making a mistake, and assess the likelihood and severity of these consequences<sup>[2]</sup>
  - Build a rigorous threat model to understand all possible attack vectors<sup>[2]</sup>
  - Research into adversarial machine learning, as it continues to offer improved performance for defenses<sup>[3]</sup> and provable guarantees<sup>[2, 4]</sup>
  - Check if there are other vulnerabilities in the Al supply chain<sup>[2, 5]</sup>

### Privacy: can Al reveal aspects of its training data?[1]

- Al systems must prioritise and safeguard consumers' privacy and data rights and provide explicit assurances to users about how their personal data will be used and protected<sup>[1]</sup>
- Regarding this issue, we should:
  - o Identify whether our AI model can be trained without the use of sensitive data<sup>[2]</sup>
  - Anonymise and aggregate incoming data using best practice data-scrubbing pipelines (e.g., removing personally identifiable information (PII) and outlier or metadata values that might allow de-anonymisation)<sup>[2]</sup>
  - Train our models using **federated learning**<sup>[3]</sup>, where a fleet of devices coordinates to train a shared global model from locally-stored training data
  - Perform tests based on "exposure" measurements<sup>[4]</sup> or membership inference assessment<sup>[5]</sup> to estimate whether our model is unintentionally memorising or exposing sensitive data

[6] Shokri et al. "Membership Inference Attacks against Machine Learning Models"

### 2. Law meets Al: Friend or Foe?

### Why the EU got it right: regulating data before Al!

- The **General Data Protection Regulation (GDPR)**<sup>[1]</sup> is a privacy and security law drafted and passed by the European Union (EU), that imposes obligations onto organizations anywhere
  - This goes back to the **right to privacy**, part of the **1950 European Convention on Human Rights**: "Everyone has the right to respect for his private and family life, his home and his correspondence"<sup>[2]</sup>
- Moreover, the EU-GDPR is all about people's privacy rights<sup>[1]</sup>:
  - The right to be informed
  - The right of access
  - The right to rectification
  - The right to erasure
  - The right to restrict processing
  - The right to data portability
  - The right to object
  - Rights in relation to automated decision making and profiling

### Can we trust AI? Towards "Trustworthy AI" in the EU

- The European Commission appointed a group of experts to provide advice on its artificial intelligence strategy: **High-Level Expert Group on Al**<sup>[1]</sup>
- According to the Guidelines, trustworthy Al should be:
  - Lawful: respecting all applicable laws and regulations
  - **Ethical**: respecting ethical principles and values
  - Robust: both from a technical perspective while taking into account its social environment
- Several important guidelines were proposed<sup>[2]</sup>:
  - Human agency and oversight: All systems should empower human beings
  - Technical Robustness and safety: All systems need to be resilient and secure
  - Privacy and data governance: data governance mechanisms must be ensured
  - **Transparency**: the data, system and AI business models should be transparent
  - o **Diversity, non-discrimination and fairness**: All systems should be accessible to all
  - Societal and environmental well-being: Al systems should benefit all human beings
  - Accountability: ensure responsibility and accountability for Al systems and their outcomes

### The Al Act and how it will impact our lives

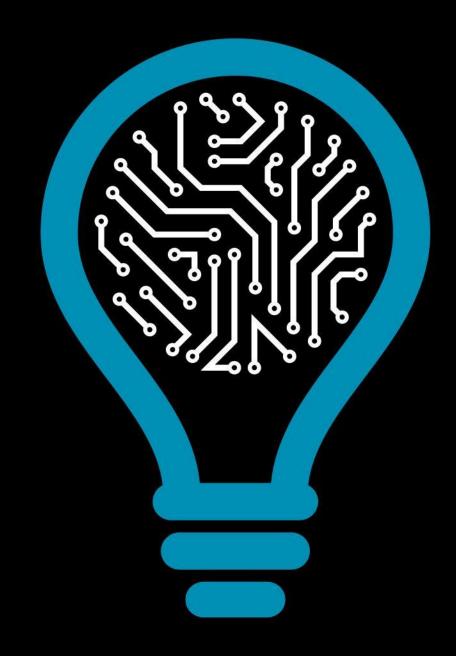
- The Al Act<sup>[1]</sup> is a **document proposed by the European Commission** that contains several **harmonised rules**<sup>[2]</sup> regarding **Al applications**, emphasising that its approach is shaped by EU values and **risk-based**, ensuring both **safety** and **fundamental rights protection**
- What does the Al Act propose?<sup>[2]</sup>
  - Prohibition of unacceptable Al practices (e.g., social scoring)
  - Regulation of high-risk Al systems (e.g., Al used in the context of recruitment)
  - Conformity assessment (i.e., under the EU product safety framework)
  - Transparency obligations for potentially deceptive AI systems
  - Ex post market surveillance (i.e., post-market monitoring system)
  - Governance (i.e., authorities must be appointed for the application and implementation)
  - Pre-emption of national Al regulatory frameworks (i.e., regulated by the EU)
  - Monitoring and enforcement (i.e., done by the Member States)
  - Compliance with the prohibitions and regulatory requirements

## 3. Take-home messages and further readings

### A (tentative) fair and accurate summary of this lecture

- The development of data-driven artificial intelligence applications is pushing the limits of the applications of these algorithms in our lives: this rapid evolution motivated the need to ethical, legal and technical regulatory frameworks based on specific principles: accountability, interpretability, fairness, safety, privacy
- At the European level, there have been several proposals to regulate data and Al-based applications: EU-GDPR, Trustworthy Al Initiative and Al Act
- Open regulatory challenges will focus on the impacts of Al in ethics, transparency, fairness, safety, sociology and sustainability<sup>[1, 2, 3, 4]</sup>
- Multidisciplinary work is, more than ever, of utmost importance and useful!

#### Further readings...


- Carlini et al. "The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks"
- Shokri et al. "Membership Inference Attacks against Machine Learning Models"
- Papernot et al. "Scalable Private Learning with PATE"
- Kannan et al. "Adversarial Logit Pairing"
- Wong and Kolter "Provable defenses against adversarial examples via the convex outer adversarial polytope"
- Gu et al. "BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain"
- Montenegro et al. "Privacy-Preserving Generative Adversarial Network for Case-Based Explainability in Medical Image Analysis"
- Pessach and Shmueli "Algorithmic Fairness"
- https://www.ibm.com/blogs/research/2019/09/adversarial-robustness-360-toolbox-v1-0/
- <a href="https://www.forbes.com/sites/anniebrown/2021/07/02/ais-role-in-the-future-of-data-privacy/?sh=b23e83918c0d">https://www.forbes.com/sites/anniebrown/2021/07/02/ais-role-in-the-future-of-data-privacy/?sh=b23e83918c0d</a>

### **Responsible AI - Lecture 2**

**TAIA - Advanced Topics on Artificial Intelligence** 

Tiago Filipe Sousa Gonçalves

tiago.f.goncalves@inesctec.pt | tiagofs@fe.up.pt





INSTITUTE FOR SYSTEMS
AND COMPUTER ENGINEERING,
TECHNOLOGY AND SCIENCE